检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:李国宁 陶亮 孟京艳 叶思佳 冯光 赵大正 胡阳 唐敏 宋涛[1,2,6] 伏荣真 左国坤 张佳楫[1,2,3,6] 施长城 LI Guoning;TAO Liang;MENG Jingyan;YE Sijia;FENG Guang;ZHAO Dazheng;HU Yang;TANG Min;SONG Tao;FU Rongzhen;ZUO Guokun;ZHANG Jiaji;SHI Changcheng(Ningbo Institute of Materials Technology and Engineering,Chinese Academy of Sciences,Ningbo,Zhejiang 315201,P.R.China;Cixi Institute of Biomedical Engineering,Ningbo,Zhejiang 315300,P.R.China;University of Chinese Academy of Sciences,Beijing 100049,P.R.China;Ningbo Rehabilitation Hospital,Ningbo,Zhejiang 315040,P.R.China;College of Mechanical Engineering,Zhejiang University of Technology,Hangzhou 310023,P.R.China;Zhejiang Engineering Research Center for Biomedical Materials,Ningbo,Zhejiang 315300,P.R.China)
机构地区:[1]中国科学院宁波材料技术与工程研究所,浙江宁波315201 [2]慈溪生物医学工程研究所,浙江宁波315300 [3]中国科学院大学,北京100049 [4]宁波市康复医院,浙江宁波315040 [5]浙江工业大学机械工程学院,杭州310023 [6]医用植介入材料浙江省工程研究中心,浙江宁波315300
出 处:《生物医学工程学杂志》2024年第1期90-97,共8页Journal of Biomedical Engineering
基 金:宁波市科技创新2025重大专项(2018B10073,2020Z082,2020Z022);浙江省基础公益研究计划(LGF21E050004,LGF21H170002)。
摘 要:在上肢康复机器人辅助训练过程中,对于软瘫期脑卒中患者通常采用被动训练策略。为了激发患者的主动康复意愿,对于逐渐具备主动发力能力的患者,康复治疗师会采用机器人助动训练策略。本文针对末端牵引式上肢康复机器人,提出一种基于交互力模糊判别的人体上肢运动功能评估方法以及按需辅助的人机交互控制策略。首先设计了基于计算力矩控制器的被动训练和结合势能场的助动训练模式,然后将训练过程中三维力传感器采集的交互力信息引入至模糊推理系统中,提出了主动参与度σ,并设计相应的辅助策略算法实现两种训练模式的自适应调整。最后通过试验证明了主动参与度σ与表面肌电信号之间的相关性。并且,相较于仅通过交互力大小进行模式调整的控制策略,该方法具有更快的响应速度,使机器人在训练过程中更具安全性。In the process of robot-assisted training for upper limb rehabilitation,a passive training strategy is usually used for stroke patients with flaccid paralysis.In order to stimulate the patient’s active rehabilitation willingness,the rehabilitation therapist will use the robot-assisted training strategy for patients who gradually have the ability to generate active force.This study proposed a motor function assessment technology for human upper-limb based on fuzzy recognition on interaction force and human-robot interaction control strategy based on assistance-as-needed.A passive training mode based on the calculated torque controller and an assisted training mode combined with the potential energy field were designed,and then the interactive force information collected by the three-dimensional force sensor during the training process was imported into the fuzzy inference system,the degree of active participationσwas proposed,and the corresponding assisted strategy algorithms were designed to realize the adaptive adjustment of the two modes.The significant correlation between the degree of active participationσand the surface electromyography signals(sEMG)was found through the experiments,and the method had a shorter response time compared to a control strategy that only adjusted the mode through the magnitude of interaction force,making the robot safer during the training process.
关 键 词:上肢运动功能评估 按需辅助 模糊判别 主动参与度 相关性分析
分 类 号:TP242[自动化与计算机技术—检测技术与自动化装置] TP273[自动化与计算机技术—控制科学与工程] R496[医药卫生—康复医学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.222.30.59