检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:唐婧媛 苟永杰 马洋洋 泮斌峰[1] TANG Jingyuan;GOU Yongjie;MA Yangyang;PAN Binfeng(School of Astronautics,Northwestern Polytechnical University,Xi′an 710072,China;Shanghai Institute of Aerospace System Engineering,Shanghai 201108,China)
机构地区:[1]西北工业大学航天学院,陕西西安710072 [2]上海宇航系统工程研究所,上海201108
出 处:《西北工业大学学报》2024年第1期98-107,共10页Journal of Northwestern Polytechnical University
摘 要:针对火箭一子级着陆问题,提出一种基于二阶皮卡-切比雪夫-牛顿类算法的制导方法。基于动力学方程的自然二阶皮卡迭代格式及切比雪夫多项式,将连续时间动力学方程进行离散化处理;将考虑终端约束的着陆问题转化为关于终端约束函数的非线性最小二乘问题,并采用高斯-牛顿方法求解该问题;在此基础上,在高斯-牛顿法的迭代过程中引入投影方法,实现推力的不等式约束。基于上述算法设计闭环制导并完成着陆段数值仿真。仿真结果表明,该制导方法具有较好的终端精度及计算效率。This paper proposes a rocket substage vertical landing guidance method based on the second-order Picard-Chebyshev-Newton type algorithm.Firstly,the continuous-time dynamic equation is discretized based on the natural second-order Picard iteration formulation and the Chebyshev polynomial.Secondly,the landing problem that considers terminal constraints is transformed into a nonlinear least-squares problem with respect to the terminal constraint function and solved with the Gauss-Newton method.In addition,the projection method is introduced to the iteration process of the Gauss-Newton method to realize the inequality constraints of the thrust.Finally,the closed-loop strategy for rocket substage vertical landing guidance is proposed and the numerical simulations of the rocket vertical landing stage are carried out.The simulation results demonstrate that compared with the sequential convex optimization algorithm,the proposed algorithm has higher computational efficiency.
分 类 号:V448.131[航空宇航科学与技术—飞行器设计]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.59