检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:张永超 兰宁 李淼 张云飞 赵晋芳[1] 罗天娥[1]
机构地区:[1]山西医科大学卫生统计教研室,030001 [2]中国医学科学院血液病医院 [3]亚利桑那州立大学
出 处:《中国卫生统计》2024年第1期156-160,共5页Chinese Journal of Health Statistics
基 金:山西省自然科学基金(201801D121210)。
摘 要:目的 在自动编码器对肺腺癌基因表达组学数据进行降维的基础上,构建Cox的神经网络扩展模型,从而对肺腺癌患者预后进行预测。方法 首先通过两种无监督学习方法:自动编码器和主成分分析分别对肺腺癌的基因表达数据进行降维,然后构建Cox-nnet模型,并与DeepSurv模型进行比较,从中选择预测性能较好的方法来识别肺腺癌的高低危患者。结果 在TCGA与GEO两个数据集中,基于自动编码器降维后的Cox-nnet模型均有较好的一致性指数与AUC值,且高低预后两组患者的生存率都具有统计学差异。结论 自动编码器比主成分分析更适用于基因表达数据的无监督降维,且经自动编码器降维后的Cox-nnet模型拥有较好的预测性能,可以明显地区分肺腺癌的高低危患者,为肺腺癌的预后研究提供科学依据。
关 键 词:肺腺癌 主成分分析 自动编码器 Cox-nnet 预后预测
分 类 号:R195.1[医药卫生—卫生统计学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222