检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:石闻达 杜劲松[1,2] 李笛出乘 SHI Wenda;DU Jinsong;LI Dichucheng(College of Fashion and Design,Donghua University,Shanghai 200051,China;College of Textiles and Clothing,Xinjiang University,Urumqi,Xinjiang 830046,China;School of Computer Science and Technology,Fudan University,Shanghai 200433,China)
机构地区:[1]东华大学服装与艺术设计学院,上海200051 [2]新疆大学纺织与服装学院,新疆乌鲁木齐830046 [3]复旦大学计算机科学技术学院,上海200433
出 处:《Journal of Donghua University(English Edition)》2024年第1期21-27,共7页东华大学学报(英文版)
摘 要:在新服装产品销售预测任务中,由于缺乏历史销售数据,通常需要充分利用其他模态的数据作为补充。然而,多模态服装数据通常具有冗余性和异构性。为解决这些问题,提出一种包括三个主要元素的层次化多模态注意力循环神经网络(hierarchical multi-modal attention based recurrent neural network,HMA-RNN)。层次化结构将高层语义信息与低层语义信息分离,以避免信息冗余。在模态融合阶段引入多模态注意力机制(multi-modal attention,MMA)以减轻固有的数据不对齐问题。采用共享注意力机制构建跨多模态数据的依赖关系。在Visuelle 2.0数据集上的试验结果表明,所提出的方法加权平均百分比误差(weighted average percentage error,WAPE)为72.07,平均绝对误差(mean absolute error,MAE)为0.80,明显优于现有的方法,表明了该研究所提出的方法的有效性。In the task of sales forecasting of new clothing products,the lack of historical sales data often necessitates the full utilization of data from other modalities as a supplement.However,multi-modal clothing data are usually redundant and heterogeneous.To solve the problems,a hierarchical multi-modal attention based recurrent neural network(HMA-RNN)including three main elements is proposed.The hierarchical structure separates high-level semantic information from low-level semantic information to avoid information redundancy.The multi-modal attention(MMA)is introduced in the fusion stage to mitigate inherent data non-alignment.The shared attention mechanism is utilized to build the dependencies across the multi-modal data.Experimental results on the Visuelle 2.0 dataset show that the proposed approach achieves promising results with 72.07 on the weighted average percentage error(WAPE)and 0.80 on the mean absolute error(MAE),outperforming existing works significantly,which indicates the effectiveness of the proposed approach.
关 键 词:服装销售预测 多模态学习 深度学习 注意力机制(MMA)
分 类 号:TP183[自动化与计算机技术—控制理论与控制工程] TS941.13[自动化与计算机技术—控制科学与工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:52.15.66.233