检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:汤捷中 Tang Jie-zhong(Aeroengine College of Shenyang Aerospace University,Liaoning Shenyang 110136)
机构地区:[1]沈阳航空航天大学航空发动机学院,辽宁沈阳110136
出 处:《内燃机与配件》2024年第3期19-21,共3页Internal Combustion Engine & Parts
摘 要:针对内燃机轴承故障发生率高、诊断困难的问题,提出了一种基于变分模态分解与遗传算法优化BP神经网络的轴承故障诊断方法。使用轴承数据集对该方法进行验证。结果表明:该方法在多种工况下诊断准确率均可达到96%以上,可以准确的识别轴承各故障类型,在一定程度上解决了内燃机轴承故障诊断困难的问题。A bearing fault diagnosis method based on variational modal decomposition and genetic algorithm optimized BP neural network is proposed to address the high occurrence rate and difficult diagnosis of bearing faults in internal combustion engines.The bearing data set of Jiangnan University is used to verify the method.The results show that the diagnostic accuracy of this method can reach over 96%under various working conditions,and it can accurately identify various types of bearing faults,solving the problem of difficult bearing fault diagnosis in internal combustion engines to a certain extent.
分 类 号:TH133.3[机械工程—机械制造及自动化]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.145