检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:王伟丽 张明伟 WANG Weili;ZHANG Mingwei(Tianjin Ren'ai College,Tianjin 301636,China)
机构地区:[1]天津仁爱学院,天津301636
出 处:《物流技术》2024年第1期30-40,共11页Logistics Technology
基 金:天津市教委科研计划项目(2019KJ154)。
摘 要:针对电力物料产品出入库频繁,扰动大,异质物料装卸时间差异大,车辆排队服务时间不确定等问题,建立电力物料装卸排队服务优化模型,模型中考虑了转换装卸仓库的时间对优化方案的影响。利用遗传算法对优良基因的记忆保留特性和算法收敛性以及粒子群算法迭代的方向性,提出混合遗传粒子群算法,加入了Metropolis抽样准则以提高算法跳出局部最优的能力。最后对国家电网天津市电力物资公司智慧物流园区实际数据算例进行仿真优化分析,模型优化后比实际的车辆平均空闲时间、最大空闲时间和总空闲时间都有大幅度减少,表明了模型的可行性和算法的有效性。相关研究模型已在企业智慧物流园区供应链多环节协同关键技术研究项目中进行分析与验证,并应用于企业实际仓储服务信息系统,极大地减小了企业运输车辆排队等待服务现象,减少了时间与成本浪费,具有较强的实际意义与应用价值。In an accelerating economy,the rapidly expanding operation scale of an enterprise would put excessive stress on the various material transportation nodes in a supply chain,as evidenced by the long queue of transportation vehicles waiting service in warehousing parks.Due to the great disturbance of the inbound and outbound orders,warehouses are unable to precisely estimate the time necessary to finish loading and un⁃loading the orders and the queuing time for service is also difficult to determine,leading to long vehicle queues that cause huge waste of personnel and costs.This phenomenon is especially obvious in the transportation and storage process of electric power materials.In this paper,in view of the characteristics of electric power materials such as wide variety,huge differ⁃ence in weight,size,loading/unloading time,and requirement on operation methods and tools,as well as is⁃sues including frequent inbound and outbound operations,large disturbance,vast differences in loading and unloading times across heterogeneous materials,and uncertain vehicle queue-to-service time,etc.,we estab⁃lished the queue-to-service optimization model in inbound and outbound operations of electric power mate⁃rials,which aims to minimize both the average and maximum idle time of all vehicles.The model considers the impact of the time spent on relocating the materials between the loading and unloading warehouses on the op⁃timization plan,and groups together the inbound vehicles and outbound orders arriving at the park within a dy⁃namic period of time in determining the arrival time and order of the outbound vehicles,thereby reducing the queuing time and cost of the vehicles.Next,we combined advantages of the genetic algorithm in gene memo⁃ry/retention and convergence with the iterative directionality of the particle swarm algorithm to design a hy⁃brid genetic particle swarm algorithm,and added in the Metropolis sampling criterion to enable the algorithm to jump out of local optimality.Finally,we had a simulation
分 类 号:TP18[自动化与计算机技术—控制理论与控制工程] F426.61[自动化与计算机技术—控制科学与工程] U491[经济管理—产业经济]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.49