检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Maximilian Brommer Maik Scharnowski Enric Illana Mahiques Siegmar Wirtz Viktor Scherer
出 处:《Particuology》2024年第2期89-101,共13页颗粒学报(英文版)
基 金:funded by the Deutsche Forschungsgemeinschaft(DFG,German Research Foundation)-Project-ID 422037413-TRR 287.
摘 要:Discrete Element Method-Computational Fluid Dynamics(DEM/CFD)simulations of industrial-scale granular systems employ spatial averaging(porous media approach)for the fluid-particle interaction in the whole domain,which can lead to poor accuracy,for instance at flow inlets,as local particle bulk morphology is not resolved.This paper presents an approach where the interstitial flow in crucial areas with large gradients can be resolved locally in an otherwise unresolved domain,so that a mixed resolved-unresolved method is realized.As a generic example to show the feasibility and performance of the new approach,the inflow of ambient air into a flat-bottom hopper through a narrow orifice is investigated.In an experimental setup,the vertical profile of the pressure decay through the inlet and across the packing is chosen for com-parison with respective simulations.Results obtained with the conventional porous media method and the locally resolved approach are compared to these experiments for varying volume flow rates and for two different particle shapes.Spheres of different size as well as dodecahedrons are examined.It is found that although averaging methods already provide good approximations,the locally resolved method can improve the result especially when conventional drag laws are not applicable due to wall effects or if large velocity gradients exist.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.13