检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:田苗[1,2] 金辉 王琦 李俊[1,2] TIAN Miao;JIN Hui;WANG Qi;LI Jun(College of Fashion and Design,Donghua University,Shanghai 200051,China;Key Laboratory of Clothing Design&Technology,Ministry of Education,Donghua University,Shanghai 200051,China)
机构地区:[1]东华大学服装与艺术设计学院,上海200051 [2]东华大学现代服装设计与技术教育部重点实验室,上海200051
出 处:《纺织高校基础科学学报》2024年第1期49-54,86,共7页Basic Sciences Journal of Textile Universities
基 金:中央高校基本科研业务费专项基金(2232023G-08)。
摘 要:为明确服装热阻研究的数据分析思路并探求更优的可视化方法,从实验设计、热阻测评、数据处理和数据分析等4个阶段对相关文献进行梳理,明确了常用的数据分析和可视化手段。研究表明服装热阻受环境、服装、人体等多方面因素影响,主要采用暖体假人或真人实验的方法获得。数据较多以二维图像或组图的形式呈现,适用3项以内影响因素结果的分析。采用人工智能方法能够纳入更多影响因素实现服装热阻的准确预测,为不同环境下服装的选择、性能优化及人体热舒适的提升提供科学指导。To clarify the ideas for clothing thermal resistance research and explore better visualization methods,relevant literature was reviewed from the four stages of experimental design,thermal resistance evaluation,data processing,and data analysis.The commonly used data analysis and visualization methods were identified.The research indicates that the thermal resistance of clothing is influenced by various factors such as environment,clothing,and the human body.It is primarily measured using thermal manikin or wear trails.The data is typically presented in the form of two-dimensional images or groups of figures,and is suitable for presenting results with less than 3 influencing factors.To accurately predict clothing thermal resistance,artificial intelligence methods can be employed to consider more influencing factors.This can provide scientific guidance for clothing selection,performance optimization,and improvement of human thermal comfort in different environments.
分 类 号:TS941.17[轻工技术与工程—服装设计与工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.249