检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:刘晟 向明旭 刘硕 于松泰 杨知方 LIU Sheng;XIANG Mingxu;LIU Shuo;YU Songtai;YANG Zhifang(State Key Laboratory of Power Transmission Equipment&System Security and New Technology,Chongqing University,Chongqing 400044,China;Beijing Power Trading Center Co.,Ltd.,Beijing 100031,China)
机构地区:[1]重庆大学输配电装备及系统安全与新技术国家重点实验室,重庆400044 [2]北京电力交易中心有限公司,北京100031
出 处:《电力自动化设备》2024年第3期150-157,共8页Electric Power Automation Equipment
基 金:北京电力交易中心有限公司科技项目(新能源承担系统消纳成本的电力市场出清模型及定价机制)(SGDJ0000YJJS2200026)。
摘 要:现有运行备用需求量化方法未考虑气象因素对系统整体预测随机性的影响,难以兼顾电网运行安全性和经济性。为此,提出了分区匹配气象及功率特征的运行备用需求量化方法。根据历史数据建立气象-功率二维区间,采用非参数核密度估计方法拟合不同区间内的净负荷预测误差分布,从而刻画不同气象、功率条件下系统整体预测的随机性;提出基于数据特征相似度的历史数据筛选和数据区间划分策略,以提升预测随机性的刻画准确性;根据运行日隶属的二维区间估计其净负荷预测随机性,据此量化给定置信水平下的系统运行备用需求。以我国某省级电网的实际数据为算例,验证了所提方法的有效性。The current operating reserve demand quantification methods do not consider the influence of me-teorological factors on the system’s overall forecast randomness,so it is difficult to take into account the safety and economy of power grid operation.Therefore,an operating reserve demand quantification method based on interval matching of meteorology and power features is proposed.Based on the historical data,the meteorology-power two-dimensional intervals are established,and the distribution of net load forecast error in different intervals is fitted by using the non-parametric kernel density estimation method,so as to describe the system’s overall forecast randomness under different meteorological and power conditions.In order to improve the characterization accuracy of forecast randomness,the historical data selection strategy and data interval division strategy based on data feature similarity are proposed.The randomness of net load predic-tion of the operating day is estimated according to the two-dimensional interval which the operating day belongs to,based on which,the operating reserve demand of the system is quantified under the given confi-dence levels.Taking the actual data of a provincial power grid in China as an example,the effectiveness of the proposed method is verified.
关 键 词:运行备用 预测随机性 气象因素 非参数核密度估计 特征相似度
分 类 号:TM73[电气工程—电力系统及自动化]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.229