基于模拟退火和樽海鞘群优化的DV-Hop定位算法  被引量:1

DV-Hop localization algorithm based on simulated annealing and optimization of salp swarm

在线阅读下载全文

作  者:张大龙 孙顶 张立志 郭仕勇 韩刚涛 ZHANG Dalong;SUN Ding;ZHANG Lizhi;GUO Shiyong;HAN Gangtao(School of Cyber Science and Engineering,Zhengzhou University,Zhengzhou 450002,China)

机构地区:[1]郑州大学网络空间安全学院,河南郑州450002

出  处:《传感器与微系统》2024年第3期125-129,共5页Transducer and Microsystem Technologies

基  金:国家自然科学基金资助项目(62401504)。

摘  要:针对无线传感器网络(WSNs)中传统DV-Hop算法定位误差较大等问题,提出基于模拟退火和樽海鞘群优化的DV-Hop定位算法。该算法分别引入RSSI和修正因子来量化最小跳数以及校正平均跳距,在未知节点估计过程中,采用改进的樽海鞘群优化算法代替最小二乘法,并且与模拟退火算法相结合,缓解了樽海鞘群优化算法在寻优过程中容易陷入局部最优的缺点。仿真结果表明:改进后的DV-Hop算法相比于传统DV-Hop定位算法以及其他智能优化算法,定位精度得到明显改善。Aiming at the problem of large positioning error of traditional DV-Hop algorithm in wireless sensor networks(WSNs),a DV-Hop positioning algorithm based on simulated annealing and optimization of salp swarm is proposed.The algorithm introduces RSSI and correction factor to quantify the minimum hops and correct the average hop distance respectively.In the process of unknown node estimation,the improved salp swarm optimization algorithm is used to replace the least square method,and combined with simulated annealing algorithm,which alleviates the disadvantage that the salp swarm optimum algorithm is easy to fall into local optimum in the optimization process.The simulation results show that the positioning precision of the improved DV-Hop algorithm is significantly improved,compared with the traditional DV-Hop positioning algorithm and other intelligent optimization algorithms.

关 键 词:DV-HOP算法 樽海鞘群算法 模拟退火算法 Tent混沌映射 惯性权重策略 

分 类 号:TP18[自动化与计算机技术—控制理论与控制工程] TP212.9[自动化与计算机技术—控制科学与工程] TN929.5[电子电信—通信与信息系统]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象