检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Yizhao Wang
机构地区:[1]College of Pipeline and Civil Engineering,China University of Petroleum,Qingdao,266580,China
出 处:《Computer Modeling in Engineering & Sciences》2024年第6期3029-3045,共17页工程与科学中的计算机建模(英文)
摘 要:Near-fault impulsive ground-shaking is highly destructive to engineering structures,so its accurate identification ground-shaking is a top priority in the engineering field.However,due to the lack of a comprehensive consideration of the ground-shaking characteristics in traditional methods,the generalization and accuracy of the identification process are low.To address these problems,an impulsive ground-shaking identification method combined with deep learning named PCA-LSTM is proposed.Firstly,ground-shaking characteristics were analyzed and groundshaking the data was annotated using Baker’smethod.Secondly,the Principal Component Analysis(PCA)method was used to extract the most relevant features related to impulsive ground-shaking.Thirdly,a Long Short-Term Memory network(LSTM)was constructed,and the extracted features were used as the input for training.Finally,the identification results for the Artificial Neural Network(ANN),Convolutional Neural Network(CNN),LSTM,and PCA-LSTMmodels were compared and analyzed.The experimental results showed that the proposed method improved the accuracy of pulsed ground-shaking identification by>8.358%and identification speed by>26.168%,compared to other benchmark models ground-shaking.
关 键 词:Impulsive ground-shaking principal component analysis artificial intelligence deep learning impulse recognition
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.49