机构地区:[1]浙江大学硅材料重点实验室,材料科学与工程学院,杭州310027 [2]苏州大学功能纳米与软物质研究院,江苏省先进负碳技术重点实验室,江苏苏州215123
出 处:《物理化学学报》2024年第1期20-21,共2页Acta Physico-Chimica Sinica
基 金:国家重点研发计划(2021YFF0502000),国家自然科学基金(61721005,52172221,51920105005),浙江大学-多伦多大学战略合作基金,中央高校基本科研业务费专项资金资助(226-2022-00159,226-2022-00200);博士后创新人才支持计划(BX20220222);中国博士后科学基金(2021M702388);江苏省卓越博士后计划(2022ZB564);江苏省优秀青年基金(BK20200101);苏州纳米科技协同创新中心,高等学校学科创新引智计划(国家“111计划”);苏州大学-西安大略大学同步辐射联合研究中心(SWC)资助。
摘 要:人口的快速增长和高能源需求产业造成了严重的环境问题。太阳能等替代性的清洁能源对于缓解能源危机和温室效应至关重要。光催化是一种很有前途的方法,但它在转化率、效率和规模化方面存在局限性。光热催化则结合了光化学和光热效应,是在温和条件下有效催化化学反应的新概念。近年来,与传统的光热催化剂相比,硅纳米结构阵列在光热CO_(2)还原反应中表现出独特的催化性能优势。作为一种平台,它表现出优异的光收集能力、高比表面积以及多样化的材料复合选择。本文综述了光热催化CO_(2)转化的概念和原理,硅纳米结构阵列的功能,以及利用硅纳米结构阵列在光热催化CO_(2)转化方面的最新进展,最终将为高性能纳米结构阵列光热CO_(2)催化剂的发展方向提供指导。Rapid population growth and the demand for energy,which is powered by unrestricted fossil fuel exploitation,have caused severe environmental problems.Thus,it is crucial to effectively exploit alternative clean energy sources.Solar energy,which is a sustainable renewable energy source,provides an effective strategy for mitigating the energy crisis and greenhouse effect without resulting in additional carbon emissions.The concept of converting carbon dioxide(CO_(2))into synthetic fuels is a promising solution towards realizing a sustainable carbon-neutral economy.Photocatalysis is a favorable approach for CO_(2) conversion,but it has limitations in terms of conversion rates,efficiency,and scalability.Therefore,the novel concept of photothermal catalysis has been proposed based on the photothermal effect of catalysts,which allows for the complete exploitation of the solar spectrum,especially infrared light that is typically wasted during photochemical catalysis.Photothermal catalysis,combining photochemical and photothermal effects,can effectively catalyze chemical reactions under mild conditions.Although various metal structures can serve as the light-absorbing and active centers for photothermal catalysis,they suffer from disadvantages such as insufficient light utilization,high cost,and poor stability.Recently,naturally abundant silicon has emerged as a prospective photothermal catalyst,especially silicon nanostructure arrays,which outperform other conventional silicon materials owing to their excellent light-harvesting ability and efficient catalytic performance.Compared with conventional photothermal catalysts,silicon nanostructure arrays have demonstrated unique catalytic performance advantages in the photothermal CO_(2) reduction reaction.As a platform,silicon nanostructure arrays exhibit an excellent light-harvesting ability,high specific surface area,and versatile hybridization possibilities.This review discusses the fundamental concepts and principles related to the theory and applications of photothermal
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...