The Enhanced Period Map and Equivariant Deformation Quantizations of Nilpotent Orbits  

在线阅读下载全文

作  者:Shi Lin YU 

机构地区:[1]Department of Mathematics,School of Mathematical Sciences,Xiamen University,Xiamen 361005,P.R.China

出  处:《Acta Mathematica Sinica,English Series》2024年第3期885-934,共50页数学学报(英文版)

基  金:Supported by China NSFC grants(Grant Nos.12001453 and 12131018);Fundamental Research Funds for the Central Universities(Grant Nos.20720200067 and 20720200071)。

摘  要:In a previous paper,the author and his collaborator studied the problem of lifting Hamil-tonian group actions on symplectic varieties and Lagrangian subvarieties to their graded deformation quantizations and apply the general results to coadjoint orbit method for semisimple Lie groups.Only even quantizations were considered there.In this paper,these results are generalized to the case of general quantizations with arbitrary periods.The key step is to introduce an enhanced version of the(truncated)period map defined by Bezrukavnikov and Kaledin for quantizations of any smooth sym-plectic variety X,with values in the space of Picard Lie algebroid over X.As an application,we study quantizations of nilpotent orbits of real semisimple groups satisfying certain codimension condition.

关 键 词:Coadjoint orbit method deformation quantization Harish-Chandra modules semisimple Liegroups 

分 类 号:O152.5[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象