智能算法的亚群优化策略综述  被引量:3

Survey of subgroup optimization strategies for intelligent algorithms

在线阅读下载全文

作  者:杜晓昕[1] 周薇 王浩 郝田茹 王振飞 金梅[1] 张剑飞[1] DU Xiaoxin;ZHOU Wei;WANG Hao;HAO Tianru;WANG Zhenfei;JIN Mei;ZHANG Jianfei(School of Computer and Control Engineering,Qiqihar University,Qiqihar Heilongjiang 161006,China)

机构地区:[1]齐齐哈尔大学计算机与控制工程学院,黑龙江齐齐哈尔161006

出  处:《计算机应用》2024年第3期819-830,共12页journal of Computer Applications

基  金:黑龙江省省属高等学校基本科研业务费自然科学类青年创新人才项目(145209206)。

摘  要:群智能算法的优化是提升群智能算法性能的一个主要途径,随着群智能算法越来越广泛地运用到各类模型优化、生产调度、路径规划等问题中,对智能算法性能的要求也越来越高。亚群策略作为一种优化群智能算法的重要手段,能够灵活地平衡算法的全局勘探能力和局部开发能力,已经成为群智能算法的研究热点之一。为了促进亚群优化策略的发展和应用,对动态亚群策略、基于主从范式的亚群策略和基于网络结构的亚群策略进行了详细调查,阐述了各类亚群策略的结构特点、改进方式和应用场景。最后,总结了亚群策略目前存在的问题以及未来的研究趋势和发展方向。The optimization of swarm intelligence algorithms is a main way to improve swarm intelligence algorithms.As the swarm intelligence algorithms are more and more widely used in all kinds of model optimization,production scheduling,path planning and other problems,the demand for performance of intelligent algorithms is also getting higher and higher.As an important means to optimize swarm intelligence algorithms,subgroup strategies can balance the global exploration ability and local exploitation ability flexibly,and has become one of the research hotspots of swarm intelligence algorithms.In order to promote the development and application of subgroup strategies,the dynamic subgroup strategy,the subgroup strategy based on master-slave paradigm,and the subgroup strategy based on network structure were investigated in detail.The structural characteristics,improvement methods and application scenarios of various subgroup strategies were expounded.Finally,the current problems and the future research trends and development directions of the subgroup strategies were summarized.

关 键 词:粒子群优化算法 群智能算法 动态亚群策略 主从范式 网络结构 

分 类 号:TP301.6[自动化与计算机技术—计算机系统结构]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象