检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:郑宇亮 陈云华[1] 白伟杰 陈平华[1] ZHENG Yuliang;CHEN Yunhua;BAI Weijie;CHEN Pinghua(School of Computer Science,Guangdong University of Technology,Guangzhou Guangdong 510006,China)
出 处:《计算机应用》2024年第3期931-937,共7页journal of Computer Applications
基 金:广东省自然科学基金资助项目(2021A1515012233)。
摘 要:将事件相机与传统相机结合进行车辆目标检测,既能解决传统相机在高动态范围下的过度曝光与曝光不足、运动模糊等问题,又能解决事件相机由于纹理信息缺失导致的检测精度不高的问题。现有融合算法往往存在计算复杂度高、特征信息丢失以及融合效果不佳等问题。为此,提出一种有效融合事件相机和传统相机的车辆目标检测算法。首先,提出一种基于事件计数(EF)和时间面(TS)的时空事件表示,将事件数据编码成事件帧;然后,提出一种基于通道和空间注意力机制的特征级融合模块(FCSA),对图像帧和事件帧进行特征级融合;最后,利用差分进化搜索算法优化先验框,以进一步提高车辆检测性能。此外,由于包含图像帧和事件数据的公开数据集较为缺乏,建立了一个车辆检测数据集MVSEC-CAR。实验结果表明,在公开数据集PKU-DDD17-CAR上,所提算法的平均精度均值(mAP)比次优的ADF(Attention fusion Detection Framework)提高了2.6个百分点,且获得了较高的帧率,有效提升了车辆目标检测的准确性和对光照的鲁棒性,验证了所提出的事件表示、特征融合和先验框优化算法的有效性。Combining event cameras with traditional cameras for vehicle target detection can not only solve the problems of over-exposure,underexposure,and motion blur in high dynamic range of traditional cameras,but also solve the problem of low detection accuracy caused by missing texture information of event cameras.Existing fusion algorithms often have problems such as high computational complexity,loss of feature information,and poor fusion results.To solve the above problems,a vehicle target detection algorithm that effectively fused event cameras and conventional cameras was proposed.Firstly,a spatio-temporal event representation based on Event Frequency(EF)and Time Surface(TS)was proposed,which encoded event data into event frames.Then,a Feature fusion module based on Channel and Spatial Attention mechanism(FCSA)was proposed to perform feature-level fusion of image frames and event frames.Finally,the prior box was optimized by using the differential evolution search algorithm to further improve the vehicle detection performance.In addition,due to the lack of public datasets containing image frames and event data,a vehicle detection dataset MVSEC-CAR was established.The experimental results show that,on the public PKU-DDD17-CAR dataset,the mean Average Precision(mAP)of the proposed algorithm is 2.6 percentage points higher than that of the second best ADF(Attention fusion Detection Framework),and it achieves a higher frame rate,effectively improving the accuracy of vehicle target detection and robustness to lighting,which validate the effectiveness of the proposed event representation,feature fusion,and prior box optimization algorithms.
关 键 词:事件相机 车辆目标检测 注意力机制 特征融合 事件表示
分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.3