检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:黄子杰 欧阳 江德港 郭彩玲[3] 李柏林[4] HUANG Zijie;OU Yang;JIANG Degang;GUO Cailing;LI Bailin(Graduate School of Tangshan,Southwest Jiaotong University,Tangshan Hebei 063000,China;School of Mechanical Engineering,Chengdu University,Chengdu Sichuan 610106,China;Hebei Key Lab of Intelligent Equipment Digital Design and Process Simulation(Tangshan University),Tangshan Hebei 063000,China;School of Mechanical Engineering,Southwest Jiaotong University,Chengdu Sichuan 610031,China)
机构地区:[1]西南交通大学唐山研究生院,河北唐山063000 [2]成都大学机械工程学院,成都610106 [3]河北省智能装备数字化设计及过程仿真重点实验室(唐山学院),河北唐山063000 [4]西南交通大学机械工程学院,成都610031
出 处:《计算机应用》2024年第3期983-988,共6页journal of Computer Applications
基 金:四川省重大科技专项(2022ZDZX0007)。
摘 要:针对人工和传统自动化算法检测牵引座焊缝表面存在检测精度低、速度低的问题,提出一种轻量型的牵引座焊缝表面质量检测算法YOLOv5s-G2CW。首先,用GhostBottleneckV2模块替换YOLOv5s中的C3模块以降低模型的参数量;其次,在YOLOv5s模型的Neck部分引入CBAM(Convolutional Block Attention Module),在通道和空间两个维度上融合焊缝特征;然后将YOLOv5s的定位损失函数改进为Wise-IoU以聚焦普通质量锚框的预测回归;最后移除YOLOv5s模型中用于大物体检测的13×13特征层以进一步降低模型的参数量。实验结果表明,与YOLOv5s模型相比,YOLOv5s-G2CW的模型大小减小了53.9%,帧率提高了8.0%,平均精度均值(mAP)提高了0.8个百分点,能够满足牵引座焊缝表面质量检测的准确性和实时性要求。In order to address the low accuracy and speed of detection by manual and traditional automation methods for the weld seam surface of traction seat,a lightweight weld seam quality detection algorithm YOLOv5s-G2CW was proposed for the weld seam surface of traction seat.Firstly,the GhostBottleneckV2 module was applied as a replacement for the C3 module in YOLOv5s to reduce the number of parameters used in the model.Then,the CBAM(Convolutional Block Attention Module)was introduced into the Neck of the YOLOv5s model for integration of the weld features in two dimensions:channel and space.Also,the positioning loss function of the YOLOv5s model was improved into Wise-IoU,focusing on the predictive regression of ordinary quality anchor frames.Finally,the 13×13 feature layer used for the detection of large-sized objects in the YOLOv5s model was removed to further reduce the number of parameters used in the model.Experimental results show that,compared with the YOLOv5s model,the size of YOLOv5s-G2CW model reduces by 53.9%,the number of frames transmitted per second increases by 8.0%,and the mAP(mean Average Precision)value increases by 0.8 percentage points.It can be seen that the model is applicable to meet the requirements for real-time and accurate detection of the weld seam surface for traction seat.
关 键 词:轻量化模型 YOLOv5s 焊缝检测 注意力机制 Wise-IoU
分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.15