检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:陈博文 李亚磊 李兴平[1] CHEN Bo-wen;LI Ya-lei;LI Xing-ping(School of Mathematics,Yunnan Normal University,Kunming 650500,China)
出 处:《数学的实践与认识》2024年第2期250-256,共7页Mathematics in Practice and Theory
摘 要:集群数据在神经科学与社会调查数据中广泛存在,备受统计学者关注.经典的因子分析方法常被用来刻画非集群数据下协变量之间的关联.集群数据中众多观测个体或变量之间的关联性却并未在因子模型框架下充分考虑.对集群数据建立因子分析模型,并通过主成分分析方法进行统计推断.随机模拟表明了模型和方法的有效性.实例分析对比了集群数据有内部关系与不考虑内部关系的情况,结果表明,考虑集群数据内部关系的效果更优.Clustered data is widely used in neuroscience and social investigation and has attracted much attention from statisticians.Classical factor analysis methods are often used to characterize the association between covariables in non-clustered data.However,the correlation between many observed individuals or variables in clustered data is not fully considered under the framework of factor model.In this paper,factor analysis model is established for clustered data,and statistical inference is made by principal component analysis method.The effectiveness of the method is demonstrated by random simulation.The case analysis compares the clustered data with internal relation and without internal relation.The result shows that considering internal relation of clustered data is better.
分 类 号:O212.1[理学—概率论与数理统计]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.217.185.32