检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Akshay Kumar Gaurav Tiwari
机构地区:[1]Department of Civil Engineering,Indian Institute of Technology(IIT)Kanpur,Kanpur,208016,India
出 处:《Journal of Rock Mechanics and Geotechnical Engineering》2024年第3期840-859,共20页岩石力学与岩土工程学报(英文版)
摘 要:Traditional global sensitivity analysis(GSA)neglects the epistemic uncertainties associated with the probabilistic characteristics(i.e.type of distribution type and its parameters)of input rock properties emanating due to the small size of datasets while mapping the relative importance of properties to the model response.This paper proposes an augmented Bayesian multi-model inference(BMMI)coupled with GSA methodology(BMMI-GSA)to address this issue by estimating the imprecision in the momentindependent sensitivity indices of rock structures arising from the small size of input data.The methodology employs BMMI to quantify the epistemic uncertainties associated with model type and parameters of input properties.The estimated uncertainties are propagated in estimating imprecision in moment-independent Borgonovo’s indices by employing a reweighting approach on candidate probabilistic models.The proposed methodology is showcased for a rock slope prone to stress-controlled failure in the Himalayan region of India.The proposed methodology was superior to the conventional GSA(neglects all epistemic uncertainties)and Bayesian coupled GSA(B-GSA)(neglects model uncertainty)due to its capability to incorporate the uncertainties in both model type and parameters of properties.Imprecise Borgonovo’s indices estimated via proposed methodology provide the confidence intervals of the sensitivity indices instead of their fixed-point estimates,which makes the user more informed in the data collection efforts.Analyses performed with the varying sample sizes suggested that the uncertainties in sensitivity indices reduce significantly with the increasing sample sizes.The accurate importance ranking of properties was only possible via samples of large sizes.Further,the impact of the prior knowledge in terms of prior ranges and distributions was significant;hence,any related assumption should be made carefully.
关 键 词:Bayesian inference Multi-model inference Statistical uncertainty Global sensitivity analysis(GSA) Borgonovo’s indices Limited data
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222