检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:顾明月 刘宿慧 徐诗琦 潘怡婷 邹奉元[1,2,3] GU Mingyue;LIU Xiuhui;XU Shiqi;PAN Yiting;ZOU Fengyuan(School of Fashion Design&Engineering,Zhejiang Sci-Tech University,Hangzhou 310018,China;Key Laboratory of Silk Culture Heritage and Products Design Digital Technology,Ministry of Culture and Tourism,Zhejiang Sci-Tech University,Hangzhou 310018,China;Zhejiang Provincial Research Center of Clothing Engineering Technology,Zhejiang Sci-Tech University,Hangzhou 310018,China)
机构地区:[1]浙江理工大学服装学院,杭州310018 [2]浙江理工大学丝绸文化传承与产品设计数字化技术文化和旅游部重点实验室,杭州310018 [3]浙江理工大学浙江省服装工程技术研究中心,杭州310018
出 处:《现代纺织技术》2024年第3期110-117,共8页Advanced Textile Technology
基 金:国家级大学生创新创业训练计划项目(202210338032);浙江理工大学科研启动基金项目(23072078-Y)。
摘 要:采用空间向量角来表征乳房形态,提出了一种青年女性乳房三维形态分类方法。首先获取209名18~25岁青年女性的乳房三维点云数据,并构建了6个乳房形态空间向量角作为聚类指标,采用k-means聚类,以手肘法确定最佳聚类数,运用学习向量量化神经网络(Learning vector quantization, LVQ)构建乳房形态判别模型,实现女性乳房形态的细分与判别。对细分后的乳房类型制作相应的文胸样板,通过虚拟试衣和实物试穿进行合体性评估,结果表明:青年女性乳房占比最多的为70B文胸号型,乳房细分为适中内敛型、平坦低胸位型、丰满外扩型。构建的LVQ神经网络青年女性乳房形态判别模型,准确率达93.33%。数字化服装压力和真实试穿实验表明,细分后的文胸合体性得到了有效提高,为不同类型乳房的文胸合体性结构设计提供参考。The curved shape of female breasts is complex,and the breast shape of women wearing the same cup bra is also different.The existing size parameters such as linearity,circumference,volume and two-dimensional angle are difficult to effectively represent the three-dimensional shape of the breast,thus affecting the fitness of the bra.The purpose of this paper is to propose a subdivision method based on spatial vector angle representation of breast shape,so as to realize the classification and discrimination of three-dimensional breast shape of young women.In this paper,three-dimensional point cloud data of 209 young women aged 18~25 were scanned and obtained.With the help of auxiliary points,lines and planes,six breast spatial vector angles were constructed as clustering indicators.The optimal clustering number was determined by elbow method and K-means was used for clustering.Learning vector quantization(LVQ)was used to construct a breast shape discrimination model,and the fitness of the subdivided bra was evaluated through digital clothing pressure and real fitting experiments.In this paper,the breast type 70B,which occupies the largest proportion under the Chinese standard in the sample,was taken as the research object,and the spatial vector angle was used to represent the stereoscopic shape of the breast.Six spatial vector angles that could represent the stereoscopic shape of the breast were constructed,including four local spatial vector angle parameters that represented the upper left,upper right,lower left and lower right shape of the breast divided by BP point as the center.Two global spatial vector angle parameters were used to characterize breast stiffness and sagging.By using k-means clustering,the breast shape can be divided into moderate and introverted(50.00%),flat and low-cut(16.07%),and full and expanded(33.93%)one.Digital clothing pressure and real fitting experiments show that the fit of the subdivided bra is better than the benchmark bra.The LVQ neural network model was established to identify brea
关 键 词:空间向量角 三维人体测量 乳房形态 LVQ神经网络 合体性
分 类 号:TS941.17[轻工技术与工程—服装设计与工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.144.229.52