检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:徐振洋 郇宝乾 李萍丰 王雪松 周成平 XU Zhen-yang;HUAN Bao-qian;LI Ping-feng;WANG Xue-song;ZHOU Cheng-ping(School of Mining Engineering,University of Science and Technology Liaoning,Anshan 114051,China;Liaoning Engineering Technology Research Center for Efficient Mining and Utilization of Metal Mineral Resources,Anshan 114051,China;Hongda Demolition Engineering Group Co.,Guangzhou 510623,China;School of Architecture and Civil Engineering,Shenyang University of Technology,Shenyang 110870,China)
机构地区:[1]辽宁科技大学矿业工程学院,鞍山114051 [2]辽宁省金属矿产资源绿色开采工程研究中心,鞍山114051 [3]宏大爆破工程集团有限责任公司,广州510623 [4]沈阳工业大学建筑与土木学院,沈阳110870
出 处:《爆破》2024年第1期27-36,50,共11页Blasting
基 金:国家自然科学基金资助项目(51974187);辽宁省教育厅重点项目(LJKZ0282)。
摘 要:爆堆块度分布特征是评价爆破效果的重要指标,针对目前爆堆块度直接与间接法测量方法的不足,提出了一种爆堆自适应分层的块度空间分布测量方法,该方法使用GA-LSSVM模型来预测Weilbull函数的形状参数α、β,并设置多个预测点,生成三维爆堆形态预测曲线。同时对Kuz-Ram块度预测模型参数进行转换和融合,建立了爆堆分层距离预测模型,并将其导入Weilbull-GA-LSSVM爆堆形态预测模型,实现爆堆自动分层。通过现场应用,不断优化分层设计,探究爆堆最佳分层位置,达到爆堆自适应分层的效果。以广东省大排矿山为工程依托开展现场试验,结果表明:(1)Weibull-GA-LSSVM模型能够准确预测爆堆形态,其中爆堆最大前移距离预测结果的平均相对误差仅为5.6%,松散系数预测结果的相对误差多数在9%左右,表现出良好的稳定性。(2)爆堆自动分层模型能够在爆前合理地输出分层距离以及分层层数,保证了爆后现场爆堆的铲装效率。(3)推导出爆堆最佳分层位置距离公式,实现了爆堆自适应分层,爆堆块度分布测量精度明显提高,更接近于爆堆整体块度分布。The distribution characteristics of blasting pile is an important index indicator to evaluate blasting effect.In view of the inadequacy of the current direct and indirect methods of measuring fragment size of the blast pile,a spatial distribution measurement method for adaptive stratification of the blast pile is proposed.It uses the GA-LSSVM model to predict the shape parametersαandβof the Weibull function and sets multiple prediction points to predict the three-dimensional blasting pile morphology.By converting and fusing the parameters of the Kuz-Ram frag-ment prediction model,a distance prediction model of blast pile stratification is established and applied to the Weibull-GA-LSSVM model to achieve an automatic stratification of the blast pile.Through field application,the strat-ification design is continuously optimized for the best stratification position to realize the adaptive stratification.The results show that:(1)the Weibull-GA-LSSVM model can accurately predict the morphology of the blast pile with a good stability that the average relative error of the prediction results of the maximum forward distance of the blast pile is only 5.6%and the relative error of the prediction results of the looseness coefficient is mostly around 9%.(2)The Kuz-Ram-based blast pile stratification model can reasonably output the layer distance and number before blast,which ensures the shoveling efficiency after blast.(3)The optimal layer distance formula is derived to achieve the a-daptive stratification of the blast pile,and the measurement accuracy of the fragment size distribution of the blast pile is significantly improved,which is closer to the overall fragment size distribution.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.144.95.186