Event-triggered H_(∞) consensus control for input-constrained multi-agent systems via reinforcement learning  

在线阅读下载全文

作  者:Jinxuan Zhang Chang-E Ren 

机构地区:[1]College of Information Engineering,Capital Normal University,Beijing,100089,China

出  处:《Control Theory and Technology》2024年第1期25-38,共14页控制理论与技术(英文版)

摘  要:This article presents an event-triggered H_(∞) consensus control scheme using reinforcement learning (RL) for nonlinear second-order multi-agent systems (MASs) with control constraints. First, considering control constraints, the constrained H_(∞) consensus problem is transformed into a multi-player zero-sum game with non-quadratic performance functions. Then, an event-triggered control method is presented to conserve communication resources and a new triggering condition is developed for each agent to make the triggering threshold independent of the disturbance attenuation level. To derive the optimal controller that can minimize the cost function in the case of worst disturbance, a constrained Hamilton–Jacobi–Bellman (HJB) equation is defined. Since it is difficult to solve analytically due to its strongly non-linearity, reinforcement learning (RL) is implemented to obtain the optimal controller. In specific, the optimal performance function and the worst-case disturbance are approximated by a time-triggered critic network;meanwhile, the optimal controller is approximated by event-triggered actor network. After that, Lyapunov analysis is utilized to prove the uniformly ultimately bounded (UUB) stability of the system and that the network weight errors are UUB. Finally, a simulation example is utilized to demonstrate the effectiveness of the control strategy provided.

关 键 词:H_(∞)optimal control Input constrains Multi-agent systems(MASs) Reinforcement learning(RL) 

分 类 号:TP13[自动化与计算机技术—控制理论与控制工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象