杂乱场景下小物体抓取检测研究  

Small object grasping detection in cluttered scenes

在线阅读下载全文

作  者:孙国栋[1] 贾俊杰 李明晶 张杨[1] Sun Guodong;Jia Junjie;Li Mingjing;Zhang Yang(School of Mechanical Engineering,Hubei University of Technology,Wuhan 430068,China)

机构地区:[1]湖北工业大学机械工程学院,武汉430068

出  处:《中国图象图形学报》2024年第2期468-477,共10页Journal of Image and Graphics

基  金:国家自然科学基金项目(51775177)。

摘  要:目的 杂乱场景下的物体抓取姿态检测是智能机器人的一项基本技能。尽管六自由度抓取学习取得了进展,但先前的方法在采样和学习中忽略了物体尺寸差异,导致在小物体上抓取表现较差。方法 提出了一种物体掩码辅助采样方法,在所有物体上采样相同的点以平衡抓取分布,解决了采样点分布不均匀问题。此外,学习时采用多尺度学习策略,在物体部分点云上使用多尺度圆柱分组以提升局部几何表示能力,解决了由物体尺度差异导致的学习抓取操作参数困难问题。通过设计一个端到端的抓取网络,嵌入了提出的采样和学习方法,能够有效提升物体抓取检测性能。结果 在大型基准数据集GraspNet-1Billion上进行评估,本文方法取得对比方法中的最优性能,其中在小物体上的抓取指标平均提升了7%,大量的真实机器人实验也表明该方法具有抓取未知物体的良好泛化性能。结论 本文聚焦于小物体上的抓取,提出了一种掩码辅助采样方法嵌入到提出的端到端学习网络中,并引入了多尺度分组学习策略提高物体的局部几何表示,能够有效提升在小尺寸物体上的抓取质量,并在所有物体上的抓取评估结果都超过了对比方法。Objective Object grasp pose detection in cluttered scenes is an essential skill for intelligent robots.Despiterecent advances in six degrees-of-freedom grasping learning,learning the grasping configuration of small objects isextremely challenging.First,given the huge amount of raw point cloud data,points in the scene should be downsampled toreduce the computational complexity of the network and increase detection efficiency.Meanwhile,previous sampling meth⁃ods sample fewer points on small objects,leading to difficulties in learning small object grasping poses.In addition,consumer-grade depth cameras currently available in the market are seriously noisy,particularly because the quality ofpoint clouds obtained on small objects cannot be guaranteed,leading to the possibility of unclear objecthood of points onsmall objects predicted by the network.Some feasible grasping points are mistakenly regarded as background points,fur⁃ther reducing the number of sampling points on small objects,resulting in weak grasping performance on small objects.Method A potential problem in previous grasp detection methods is that they do not consider the biased distribution of sam⁃pling points due to differences in the scale of objects in the scene,resulting in fewer sampling points on small objects.Inthis study,we propose an object mask-assisted sampling method that samples the same points on all objects to balance grasping distribution,solving the problem of the uneven distribution of sampling points.In the inference,without a prioriknowledge of scene point-level masks,we introduce an unseen object instance segmentation network to distinguish objectsin the scenario,implementing a mask-assisted sampling method.In addition,a multi-scale learning strategy is used forlearning,and multi-scale cylindrical grouping is used on the partial point clouds of objects to improve local geometric repre⁃sentation,solving the problem of difficulty in learning to grasp operational parameters caused by differences in objectscales.In particular,we

关 键 词:六自由度抓取 采样策略 多尺度学习 点云学习 深度学习 

分 类 号:TP391[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象