Advances of high-performance LiNi_(1-x-y)Co_(x)M_(y)O_(2) cathode materials and their precursor particles via co-precipitation process  被引量:3

在线阅读下载全文

作  者:Wenbiao Liang Yin Zhao Liyi Shi Zhuyi Wang Yi Wang Meihong Zhang Shuai Yuan 

机构地区:[1]School of Materials Science and Engineering,Shanghai University,Shanghai,200444,China [2]Research Center of Nanoscience and Nanotechnology,Shanghai University,Shanghai,200444,China [3]Emerging Industries Institute,Shanghai University,Jiaxing,Zhejiang,314006,China

出  处:《Particuology》2024年第3期67-85,共19页颗粒学报(英文版)

基  金:the Natural Science Foundation of Shanghai(grant No.23ZR1423600);Shanghai Municipal Science and Technology Commission(grant No.19640770300,20dz1201102);The Professional and Technical Service Platform for Designing and Manufacturing of Advanced Composite Materials(Shanghai,grant No.19DZ2293100);Engineering Research Center of Material Composition and Advanced Dispersion Technology,Ministry of Education.

摘  要:Layered LiNi_(1-x-y)Co_(x)M_(y)O_(2)(M=Mn or Al)is a promising cathode material for lithium-ion batteries due to its high specific capacity and acceptable manufacturing cost.However,the polycrystalline LiNi_(1-x-y)Co_(x)M_(y)O_(2) cathode material suffers from disordered orientation of primary particles and poor geometric symmetry of secondary particles,which severely hampers the migration of Lit ions.Furthermore,the resulting anisotropy accelerates the disintegration of the secondary particle structure,significantly affecting the electrochemical performance of the polycrystalline cathode.In spite of less grain boundary,the single-crystal LiNi_(1-x-y)Co_(x)M_(y)O_(2) cathodes still suffer from severe microcracks generated by repeated planar gliding during cycling,which poses a great challenge to the cycling stability of single-crystal materials.It's worth noting that the microstructure of the cathode material is mainly inherited from its precursor.Therefore,it is necessary to deeply understand the influence of the microstructure of Ni_(1-x-y)Co_(x)M_(y)(OH)2 on the electrochemical properties of LiNi_(1-x-y)Co_(x)M_(y)O_(2) cathode materials,so as to optimize the production process of preparing high-performance cathode precursors.In this review,we summarize recent advances in the research and development of Ni-rich cathode precursor materials.Firstly,the challenges faced by the Ni-rich hydroxide precursor materials are presented,including the effect of primary particle morphology and arrangement on the electrochemical performance of cathode materials,the influence of secondary particle morphology on lithium insertion reactions in cathode,and the effect of particle size on the microcracking of single-crystal particles.Secondly,the presentation of the conventional co-precipitation reactor,the mechanism of precursor particle growth,and the influence of coprecipitation parameters are described in detail.Finally,the strategies are systematically discussed to solve the challenges of hydroxide precursors,such as the inno

关 键 词:Lithium-ion batteries Cathode materials CO-PRECIPITATION Ni-rich layered oxides Single crystal Precursor particles 

分 类 号:TM910.4[电气工程—电力电子与电力传动]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象