基于功率谱流形的信息几何DP-TBD算法  

Power Spectrum Manifold-Based Information Geometry DP-TBD Algorithm

在线阅读下载全文

作  者:吴昊[1] 程永强 杨政 黎湘[1] 王宏强[1] WU Hao;CHENG Yong-qiang;YANG Zheng;LI Xiang;WANG Hong-qiang(College of Electronic Science and Technology,National University of Defense Technology,Changsha,Hunan 410079,China)

机构地区:[1]国防科技大学电子科学学院,湖南长沙410079

出  处:《电子学报》2024年第1期193-200,共8页Acta Electronica Sinica

基  金:湖南省杰出青年基金(No.2022JJ0063);国家自然科学基金(No.61921001);国家重点研发计划(No.2022YFB3902400)。

摘  要:针对复杂杂波背景下目标信杂比起伏而导致的漏检问题,本文结合信息几何检测器的性能优势与动态规划检测前跟踪(Dynamic Programming Track Before Detect,DP-TBD)的多帧信息积累能力,提出了基于功率谱流形的信息几何DP-TBD算法.该算法利用功率谱流形与矩阵流形对偶关系,设计了功率谱信息几何检测器,将信息几何检测器的计算复杂度降低了近两个数量级.通过实测数据实验验证,功率谱DP-TBD算法可实现与矩阵DP-TBD算法相近的检测性能,并将运算时间降低为矩阵DP-TBD算法的3%~8%.此外,相较于信息几何检测器,功率谱DP-TBD可将检测信杂比(Signal-to-Clutter Ratio,SCR)提高2~3 dB.To address the missed detection problem resulting from the fluctuation of target signal-to-clutter ratio in com-plex clutter background,this paper proposes the power spectrum manifold-based information geometry dynamic programming track-before-detect(DP-TBD)algorithm by combining the performance advantage of information geometry detector and the ability of dynamic programming in multi-frame information accumulation.This algorithm utilizes the duality between the power spectrum manifold and matrix manifold and designs the power spectrum information geometry detector to reduce the computation complexity of information geometry detector by approximate two levels.According to the experiments based on real-recorded clutter data,the power spectrum DP-TBD algorithm achieves almost the same detection perfor-mance as the matrix DP-TBD algorithm while only requires 3%~8%running time than that of the matrix DP-TBD algo-rithm.In addition,the power spectrum DP-TBD algorithm provides an SCR improvement of 2~3 dB to information geometry detector.

关 键 词:雷达目标检测 信息几何检测器 检测前跟踪 功率谱流形 动态规划 

分 类 号:TN957.51[电子电信—信号与信息处理]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象