检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:蔡佩良 刘超武[1] 朱振刚[1] 熊桅 狄冠麟[1] 乔亚珍[1] 钟新春[1] 袁琛[1] 窦迎婷[1] 郑延龙[1] 白融 贾宗月 Cai Peiliang;Liu Chaowu;Zhu Zhengang;Xiong Wei;Di Guanlin;Qiao Yazhen;Zhong Xinchun;Yuan Chen;Dou Yingting;Zheng Yanlong;Bai Rong;Jia Zongyue(The First Teach-ing Hospital of Tianjin University of Traditional Chinese Medicine,National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion,Tianjin 300000,China)
机构地区:[1]天津中医药大学第一附属医院,国家中医针灸临床医学研究中心,天津300000
出 处:《中国中医急症》2024年第3期399-404,共6页Journal of Emergency in Traditional Chinese Medicine
基 金:国家中医药管理局中医药循证能力提升项目;天津市中医药重点领域科研项目(2021012)。
摘 要:目的使用人工智能模型构建非危重型新型冠状病毒肺炎的中医辅助决策模型,协助医生进行诊断。方法收集2022年12月至2023年6月于天津中医药大学第一附属医院呼吸科、感染科、急诊科就诊的新冠病毒肺炎患者病历314份,以此建立数据集。将314个数据样本按7∶3比例分为训练集和测试集,利用随机森林、支持向量机、LightGBM和K最近邻分别构建非危重型新型冠状病毒肺炎辨证诊断模型,以精确率、召回率、f1分数、AUC值等作为模型的评价指标。利用4种人工智能模型构建中医辅助决策软件。结果随机森林、支持向量机、LightGBM、K最近邻的精确率分别为0.94、0.95、0.89、0.90;召回率分别为0.94、0.95、0.88、0.90;f1分数分别为0.94、0.95、0.88、0.90;AUC值分别为0.99、0.99、0.99、0.99。结论支持向量机模型准确率最高,更适用于构建非危重型新型冠状病毒肺炎的中医辅助决策模型,中医辅助决策软件能提高临床诊断效率。Objective:To build a traditional Chinese medicine(TCM)-assisted decision-making model for nonsevere cases of COVID-19 using artificial intelligence.Methods:A dataset was created by collecting medical re⁃cords of 314 patients with COVID-19 from the Respiratory Department,Infectious Disease Department,and Emer⁃gency Department of the First Affiliated Hospital of Tianjin University of Traditional Chinese Medicine from De⁃cember 2022 to June 2023.The dataset was split into a training set and a test set in a 7∶3 ratio.Non-severe COV⁃ID-19 diagnostic models were built using Random Forest,Support Vector Machine(SVM),LightGBM,and K-Near⁃est Neighbors,with evaluation metrics including precision,recall,F1 score,and AUC value.Results:The preci⁃sion of Random Forest,SVM,LightGBM,and K-Nearest Neighbors were 0.94,0.95,0.89,and 0.90,respectively.The recall values were 0.94,0.95,0.88,and 0.90,respectively,while f1 scores were 0.94,0.95,0.88,and 0.90,re⁃spectively.The AUC values were 0.99 for all models.Conclusion:The SVM model demonstrated the highest accu⁃racy and is more suitable for building a TCM-assisted decision-making model for non-severe cases of COVID-19.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.185