检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:许梦玥 侯秀萍[1] 王俊华[1] XU Mengyue;HOU Xiuping;WANG Junhua(School of Computer Science&Engineering,Changchun University of Technology,Changchun 130102,China)
机构地区:[1]长春工业大学计算机科学与工程学院,吉林长春130102
出 处:《长春工业大学学报》2023年第6期546-551,共6页Journal of Changchun University of Technology
基 金:吉林省教育厅“十三五”科学技术项目(JJKH20191311KJ)。
摘 要:针对短文本存在特征稀疏和信息不规范等特点,文中在TextGCN模型的基础上通过增加词性过滤减弱无关词对特征选择的影响,并加入TF-CR算法提高类别无关词权重,最后,通过与几个经典模型进行对比,验证改进模型的有效性。In view of the features of the short text such as sparse features and non-standard information,this paper,based on the TextGCN model,reduces the influence of irrelevant words on feature selection by adding part of speech filtering,and adds TF-CR algorithm improves the weight of category independent words,and finally verifies the effectiveness of the improved model by comparing with several classical models.
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.3