中医体质分类辨识技术的回顾和展望  被引量:3

A review and prospects of body constitution classification and identification techniques in traditional Chinese medicine

在线阅读下载全文

作  者:杨丰蔚 李竹青 张钟文 唐燕 赵晓山[3] 曲淼 王艳 王济[2] 韩爱庆 YANG Fengwei;LI Zhuqing;ZHANG Zhongwen;TANG Yan;ZHAO Xiaoshan;QU Miao;WANG Yan;WANG Ji;HAN Aiqing(School of Management,Beijing University of Chinese Medicine,Beijing 100029,China;National Institute of Traditional Chinese Medicine Constitution and Preventive Treatment of Beijing University of Chinese Medicine,Beijing 100029,China;School of Traditional Chinese Medicine,Southern Medical University,Guangzhou 510515,China;Department of Neurology,Xuanwu Hospital Capital Medical University,Beijing 100053,China)

机构地区:[1]北京中医药大学管理学院,北京100029 [2]北京中医药大学国家中医体质与治未病研究院,北京100029 [3]南方医科大学中医药学院,广州510515 [4]首都医科大学宣武医院神经内科,北京100053

出  处:《天津中医药》2024年第3期398-402,共5页Tianjin Journal of Traditional Chinese Medicine

基  金:国家重点研发计划项目(2020YFC2003100,2020YFC2003101,2020YFC2003103)

摘  要:中医体质理论寻求建立以“治未病”为基础思想的疾病预防体系,体质辨识效果直接影响后续的健康干预等措施。目前中医体质的主要辨识方法为量表法和医生四诊法,缺乏标准性和客观性。对现有中医体质辨识技术与中医体质辅助辨识技术进行整理与回顾,并在现有研究基础上,结合以深度学习为主的人工智能技术和多模态数据融合思想,对未来中医体质分类辨识技术的发展方向作出探讨与展望。The constitution theory of traditional Chinese medicine seeks to establish a disease prevention system based on the idea of“preventive treatment of diseases”.The effectiveness of constitution identification directly affects the subsequent health interventions.At present,the main methods of traditional Chinese medicine constitution identification are the scale method and the four diagnostic methods of doctors,which lack standardization and objectivity.In this paper,we review the existing traditional Chinese medicine identification and assisted identification technology,and discuss the future development of traditional Chinese medicine constitution classification and identification techniques based on the existing research,combined with deep learning-based artificial intelligence technology and multimodal data fusion ideas.

关 键 词:中医体质 中医体质辨识 多模态 人工智能 

分 类 号:R2-03[医药卫生—中医学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象