基于改进轻量化网络MobileViT的苹果树叶病害识别  被引量:4

Apple leaf disease identification based on improved lightweight network MobileViT

在线阅读下载全文

作  者:马维娣 吴钦木[1] Ma Weidi

机构地区:[1]贵州大学电气工程学院,贵州贵阳550025

出  处:《江苏农业科学》2024年第3期229-236,共8页Jiangsu Agricultural Sciences

基  金:国家自然科学基金(编号:51867006)。

摘  要:针对传统的苹果树叶病害识别模型准确率低,参数数量多和移动端部署困难的问题,提出了一种基于改进轻量化网络MobileViT的的苹果树叶病害识别方法。该网络模型以MobileViT作为主干网络,高效编码全局信息,同时引入MV2模块编码局部信息,将原MobileViT网络结构中的Swish激活函数替换为SMU激活函数提高网络性能,并在全连接层后添加Dropout层防止数据过拟合。针对常见的多病症叶片、锈病叶片等苹果树叶病害进行识别。试验结果表明,改进后的MobileViT相对于其他轻量级网络识别准确率高,相对于重量级网络更轻量、反应更迅速,测试集识别的准确率达到95.73%,参数数量所占显存空间仅为5.6 MB,单张苹果树叶病害图片的响应时间为4.32 ms。最终将模型部署在在移动设备,落地实现成为可能。

关 键 词:苹果树 病害识别 SMU 轻量级 MV2 MobileViT 

分 类 号:S126[农业科学—农业基础科学] TP391.41[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象