基于改进灰色预测单神经元PI的全超导托卡马克核聚变发电装置快控电源电流控制  

Current Control of Experimental Advanced Superconducting Tokamak Fast Control Power Supply Based on Improved Grey Prediction Single Neuron PI

在线阅读下载全文

作  者:黄海宏[1] 陈昭 王海欣[1] Huang Haihong;Chen Zhao;Wang Haixin(School of Electrical Engineering and Automation Hefei University of Technology,Hefei 230009 China)

机构地区:[1]合肥工业大学电气与自动化工程学院,合肥230009

出  处:《电工技术学报》2024年第6期1886-1897,共12页Transactions of China Electrotechnical Society

基  金:国家自然科学基金区域创新发展联合基金资助项目(U22A20225)。

摘  要:全超导托卡马克核聚变发电装置(EAST)快控电源负载电感的电流受多种不确定环境因素的影响而难以预测,灰色预测无需精确对象模型,只需少量已知信息即可实现输出电流短期预测,已在EAST快控电源中有了一定研究应用。为解决灰色预测在EAST快控电源中对突变信号边沿预测精度低和预测延时时间长的问题,提出一种改进灰色预测算法实现输出电流预测。在一个开关周期内对输出电流进行等时长间隔采样4次作为原始序列,将滚动式采样预测改为逐周期采样预测,在实现灰色预测的过程中不必依赖过去几个周期的历史采样信息,只需本周期的4个原始采样值即可实现输出电流的预测。根据预测电流与参考电流误差自适应调整单神经元比例-积分(PI)控制的输出增益,实现输出电流的快速准确控制。仿真和实验结果表明,在EAST快控电源电流预测过程中所提出的改进灰色预测,对比传统灰色预测具有更高的预测精度和更小的预测延时,改进灰色预测变增益单神经元PI控制能够在减小电流超调的同时加快输出电流响应速度。The current of load inductance in the experimental advanced superconducting Tokamak(EAST)fast control power supply is difficult to predict due to the influence of various uncertain environmental factors.An accurate object model is optional in grey prediction.When the traditional rolling grey prediction is applied to the EAST fast control power supply,there is a specific prediction error at the abrupt signal,and at least 4 cycles of historical current data are needed to realize the current prediction of the next cycle.There are low prediction accuracy and long prediction delay problems for the edge of abrupt signal in the EAST fast control power supply.Therefore,an improved grey prediction algorithm is proposed to predict the output current.The output current is sampled 4 times at equal time intervals in a switching cycle as the original sequence.The rolling sampling prediction is changed to the cycle-by-cycle sampling prediction.Historical sampling information of the past several periods is needed to realize grey prediction,and four original sampling values of the current period are needed to realize the prediction of output current at the expense of the delay of one switching period.The original data sequence is composed of 4 times sampled at equal time intervals in a switching period,which avoids the value with non-exponential law in the original sequence and further improves the accuracy of grey prediction at the abrupt signal.The performance difference between improved grey prediction and traditional grey prediction is analyzed through convergence analysis.The improved grey prediction has a faster convergence speed and smaller prediction errors.Based on the objective function of the current tracking reference current at the next moment,a single neuron PI parameter adaptive adjustment network structure is constructed.The output gain of the single neuron proportional-integral(PI)control is adaptively adjusted according to the error between the predicted current and the reference current,and the PI parameter is

关 键 词:EAST快控电源 改进灰色预测 逐周期采样预测 变增益单神经元PI 

分 类 号:TM93[电气工程—电力电子与电力传动] TM917

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象