检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:申圆圆 王博[1,3] 柯冬倩 郑斗斗 李中豪 温焕飞[1,3] 郭浩[1,3] 李鑫[1,3] 唐军[1,2,3] 马宗敏[1,2,3] 李艳君[1,5] 伊戈尔·费拉基米罗维奇·雅明斯基 刘俊[1,3] Shen Yuan-Yuan;Wang Bo;Ke Dong-Qian;Zheng Dou-Dou;Li Zhong-Hao;Wen Huan-Fei;Guo Hao;Li Xin;Tang Jun;Ma Zong-Min;Li Yan-Jun;Igor Vladimirovich Yaminsky;Liu Jun(State Key Laboratory of Dynamic Testing Technology,North University of China,Taiyuan 030051,China;School of Semiconductor and Physics,North University of China,Taiyuan 030051,China;Shanxi Key Laboratory of Quantum Sensing and Precision Measurement,North University of China,Taiyuan 030051,China;Department of Electronic Engineering,Taiyuan Institute of Technology,Taiyuan 030008,China;Department of Applied Physics,Graduate School of Engineering,Osaka University,Osaka 5650871,Japan;Advanced Technology Center,Moscow State University,Moscow 119311,Russia)
机构地区:[1]中北大学,省部共建动态测试技术国家重点实验室,太原030051 [2]中北大学半导体与物理学院,太原030051 [3]中北大学,量子传感与精密测量山西省重点实验室,太原030051 [4]太原工业学院电子工程系,太原030008 [5]日本大阪大学,工学研究科,大阪5650871 [6]俄罗斯国立莫斯科大学先进技术中心,莫斯科119311
出 处:《物理学报》2024年第6期339-348,共10页Acta Physica Sinica
基 金:国防基础科学研究计划;国家自然科学基金国际合作与交流项目(批准号:62220106012);山西省杰出青年基金(批准号:202103021221007);山西省“1331”项目重点学科建设基金(批准号:1331KSC)资助的课题。
摘 要:高分辨率宽频谱测量技术在天文学、无线通信、医学成像等领域具有重要应用价值.金刚石氮-空位(nitrogen-vacancy,NV)色心因其高稳定性、高灵敏度、实时监测、单点探测以及适用于长时间测量等特性已成为频谱分析仪备受关注的选择.目前,基于NV色心作为探测器的宽频谱分析仪能够在几十GHz频带内进行实时频谱分析,然而其频率分辨率仅达到MHz水平.本文通过搭建结合连续外差技术的量子金刚石微波频谱成像系统,利用磁场梯度对NV色心谐振频率进行空间编码,成功获取了900 MHz—6.0 GHz范围内完整的频谱数据.在可测频谱范围内,系统进一步采用连续外差的方法,同时施加谐振微波和轻微失谐的辅助微波对NV色心进行有效激发,增强了NV磁强计对微弱微波信号的响应.该方法使系统在可测频谱范围内实现了1 Hz的频率分辨率,并能够对间隔为1 MHz扫频步进的多个频点的频率分辨率进行单独测量.以上研究结果表明基于NV色心的宽频谱测量可实现Hz级频率分辨,为未来的频谱分析和应用提供了有力的技术支持.High-resolution wide-spectrum measurement techniques have important applications in fields such as astronomy,wireless communication,and medical imaging.Nitrogen-vacancy(NV)center in diamond is well known for its high stability,high sensitivity,real-time monitoring,single-point detection,and suitability for long-term measurement,and has an outstanding choice for spectrum analyzers.Currently,spectrum analyzers based on NV centers as detectors can perform real-time spectrum analysis in the range of several tens of gigahertz,but their frequency resolution is limited to a MHz level.In this study,we construct a quantum diamond microwave spectrum imaging system by combining continuous wave-mixing techniques.According to the spin-related properties of the NV center in diamond,we implement optical pumping by 532 nm green laser light illuminating the diamond NV center.A spherical magnet is used to produce a magnetic field gradient along the direction of the diamond crystal.By adjusting the size and direction of the magnetic field gradient,spatial encoding of the resonance frequency of the NV center is achieved.The magnetic field gradient induces the Zeeman effect on the diamond surface at different positions,generating corresponding ODMR signals.Through accurate programming,we coordinate the frequency scanning step size of the microwave source with the camera exposure and image storage time,and synchronize them circularly according to the order of image acquisition.Ultimately,after algorithmic processing,we successfully obtain comprehensive spectrum data in a range from 900 MHz to 6.0 GHz.Within the measurable spectrum range,the system employs continuous wave-mixing,simultaneously applying resonant microwaves and slightly detuning auxiliary microwaves to effectively excite the NV center.This method triggers off microwave interference effects,disrupting the balance between laser-induced polarization and microwave-induced spontaneous relaxation.Specifically,microwave interference causes the phase and amplitude of the fluores
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.188.152.124