检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:张锏 王浩军 刘旷 周华飞 ZHANG Jian;WANG Haojun;LIU Kuang;ZHOU Huafei(Zhejiang Design Institute of Water Conservancy&Hydro-Electric Power Co,Ltd.,Hangzhou 310002,Zhejiang,China;Zhejiang University of Technology,Hangzhou 310000,Zhejiang,China)
机构地区:[1]浙江省水利水电勘测设计院有限责任公司,浙江杭州310002 [2]浙江工业大学,浙江杭州310000
出 处:《浙江水利科技》2024年第2期60-66,共7页Zhejiang Hydrotechnics
摘 要:针对现有土石坝渗漏检测方法常面临的设备布置繁琐与数据分析复杂等问题,提出一种基于无人机红外热成像技术的土石坝渗漏巡检方法,并结合自适应阈值分割和图像形态学处理等技术,构建一套智能化的基于红外图像的渗漏区域识别方法。为验证该方法的可行性,以金华市某水库为试验点,进行实际工程的渗漏巡检和识别,并使用并行电法予以验证。结果表明,该方法能够自动并准确地识别渗漏区域,能显著提升渗漏检测的效率和适应性,为土石坝渗漏巡检与识别问题提供一种可行的技术方法。In response to the challenges often encountered in current rockfill dam leakage detection methods,such as intricate equipment setup and complex data analysis,this paper proposed a method based on UAV and infrared thermographic imaging.The method combines techniques such as adaptive threshold segmentation and image morphological processing to intelligently identify leakage areas based on infrared images.To validate the feasibility of the method,field leakage inspection and identification were conducted at a reservoir in Jinhua City,using the parallel electric method as a corroborative tool.The findings suggest that our proposed methodology can autonomously and accurately identify leakage zones,substantially enhancing the efficiency and adaptability of leakage detection.This offers a feasible solution to the challenges of leakage inspection and identification in rockfill dams.
关 键 词:土石坝 渗漏 无人机遥感技术 红外热成像 图像处理
分 类 号:TV698.12[水利工程—水利水电工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7