Fe对Ni-Mn-Ga合金微丝形状记忆效应的影响  被引量:2

Influence of Fe on shape memory effect of Ni-Mn-Ga alloy microwire

在线阅读下载全文

作  者:刘艳芬[1] 李爽 郎子锐 马梓轩 刘晓华[1] LIU Yanfen;LI Shuang;LANG Zirui;MA Zixuan;LIU Xiaohua(Department of Physics,Qiqihar University,Qiqihar 161006,Heilongjiang,China)

机构地区:[1]齐齐哈尔大学物理系,黑龙江齐齐哈尔161006

出  处:《材料工程》2024年第3期182-191,共10页Journal of Materials Engineering

基  金:国家自然科学基金项目(51701099);黑龙江省自然科学基金(LH2019E091);2022年黑龙江省省属本科高校基本科研业务费面上项目(145209133);2020年度黑龙江省省属本科高校基本科研业务费青年创新人才项目(135509218)。

摘  要:以Ni-Mn-Ga合金微丝为基础分析Fe元素掺杂前后对合金微丝的形状记忆效应的变化。用真空磁控钨极电弧熔炼炉制备Ni-Mn-Ga-Fe合金,并用高真空精密熔体抽拉设备将母合金制备成微丝。采用EDS能谱分析仪、DSC差示扫描量热分析仪、XRD、DMA动态机械分析仪,研究Fe元素掺杂Ni-Mn-Ga合金微丝后的物相、马氏体相变行为、微丝的形状记忆效应。结果表明,Ni-Mn-Ga-Fe合金微丝显示的是四方结构马氏体相和面心立方结构奥氏体相的混合相,对微丝采用步进式阶梯有序化热处理,有序化热处理能有效降低微丝内部缺陷,释放内应力,细化微丝内部晶粒,收缩晶格体积,马氏体孪晶界面更加平直,孪晶面更易移动,微丝的伸长率提高。在258 K下对制备态Ni-Mn-Ga-Fe合金微丝进行单程形状记忆的测试,拉伸到350 MPa后卸载到0 MPa,随后将微丝升温到奥氏体态后,应变恢复率为78.75%,而在289K对有序化热处理态Ni-Mn-Ga-Fe合金微丝进行单程形状记忆测试,应变恢复率达到100%。在126 MPa和240 MPa下分别对有序化热处理态三元Ni-Mn-Ga合金微丝和Ni-Mn-Ga-Fe合金微丝进行恒应力拉伸,两种微丝双程形状恢复能力均接近100%,但Ni-Mn-Ga-Fe合金微丝在发生形变时的弹性应变储能略高于Ni-Mn-Ga合金微丝。Fe的加入使得到的合金微丝的力学性能高于传统三元形状记忆合金微丝;制备态下和热处理态的Ni-Mn-Ga-Fe合金微丝的马氏体相变温度较Ni-Mn-Ga合金微丝分别提高6.0 K和11.5 K,热滞分别降低6.7 K和1.5 K。The shape memory effect of alloy microwire with Fe replacing Ga based on Ni-Mn-Ga alloy microwire was analyzed.Ni-Mn-Ga-Fe alloy was prepared by vacuum tungsten arc melting furnace and the parent alloy was prepared by a high vacuum precision melt drawing equipment.The effects of Fe doping on the phase,the martensite transition behavior,and shape memory effect were studied by EDS,DSC,XRD and DMA.The results show that the Ni-Mn-Ga-Fe alloy microwire shows the mixed phase of tetragonal martensite phase and face-centered cubic austenitic phase.The step ordering heat treatment was used for the microwire.The microwire was treated by step-by-step step ordering heat treatment,the ordered heat treatment can effectively reduce the internal defects of the microwires,release the internal stress,refine the internal grains of the microwire,shrink the lattice volume,improve the compactness of the microwire,and make the martensite twin interface more straight and easier to move,and improve the elongation of the microwire.The one-way shape memory test of the prepared Ni-Mn-Ga-Fe alloy microwires is carried out at 258 K,after stretching to 350 MPa and unloading to 0 MPa.The strain recovery rate is 78.75%after the microwires are heated to the austenite state.The one-way shape memory test of the ordered heat-treated Ni-Mn-Ga-Fe alloy microwires is carried out at 289 K,and the strain recovery rate reaches 100%.The ordered heat-treated ternary Ni-Mn-Ga alloy microwire and Ni-Mn-Ga-Fe alloy microwire are stretched under constant stress at 126 MPa and 240 MPa,respectively.The two-way shape recovery ability of the two microwires can reach almost 100%,but the phase transition width of the alloy microwire during deformation,namely the elastic strain energy storage is more than that of the ternary alloy microwire.The addition of Fe makes the mechanical properties of the alloy microwires higher than that of the traditional ternary shape memory alloy microwire;compared with Ni-Mn-Ga alloy microwires,the martensitic transformation temperatures

关 键 词:形状记忆合金 Ni-Mn-Ga铁磁合金微丝 马氏体相变 形状记忆效应 

分 类 号:O731[理学—晶体学] O782[一般工业技术—材料科学与工程] TG139.6[金属学及工艺—合金]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象