运行时间周期化工业机器人模型迭代寻优NURBS轨迹插补  

Industrial robot running time periodization and model iterative optimization NURBS trajectory interpolation

在线阅读下载全文

作  者:杨博涵 邢燕好[1] 张佳 张华良[2,3,4] 张建鹏[5] YANG Bo-han;XING Yan-hao;ZHANG Jia;ZHANG Hua-liang;ZHANG Jian-peng(College of Information Science and Engineering,Shenyang University of Technology,Shenyang Liaoning 110870,China;Key Laboratory of Networked Control Systems,Chinese Academy of Sciences,Shenyang Liaoning 110016,China;Shenyang Institute of Automation,Chinese Academy of Sciences,Shenyang Liaoning 110016,China;Institutes for Robotics and Intelligent Manufacturing,Chinese Academy of Sciences,Shenyang Liaoning 110169,China;Northwest Industries Group CO,LTD,Xi’an Shaanxi 710043,China)

机构地区:[1]沈阳工业大学信息科学与工程学院,辽宁沈阳110870 [2]中国科学院网络化控制系统重点实验室,辽宁沈阳110016 [3]中国科学院沈阳自动化研究所,辽宁沈阳110016 [4]中国科学院机器人与智能制造创新研究院,辽宁沈阳110169 [5]西北工业集团有限公司,陕西西安710043

出  处:《控制理论与应用》2024年第2期331-341,共11页Control Theory & Applications

基  金:国家重点研发计划项目(2018YFE0205802);2021年辽宁省教育厅面上项目(LJKZ0135)资助.

摘  要:为满足工业机器人高精度复杂曲线运动的需求,本文提出运行时间周期化工业机器人模型迭代寻优NURBS轨迹插补算法.首先,根据轨迹最大轮廓误差和机器人动力学特性对曲线分段.随后,提出优化回溯算法,使各子曲线段均可用S曲线加减速规划.之后,为保证机器人在进给速度极小值处不超速,将各加减速阶段运行时间调整为插补周期的整数倍,并对子曲线段衔接处速度平滑处理.最后,提出模型迭代寻优曲线插补,大大降低了速度波动率.仿真试验表明,该方法插补轨迹的各项指标均满足要求且最大速度波动率仅为0.000099%.真机试验也验证了该方法可有效减小轨迹误差.Aiming to meet the needs of high-precision complex curve motion of industrial robots,industrial robot running time periodization and model iterative optimization NURBS trajectory interpolation is proposed.To begin with,the curve is segmented according to the maximum chord error of the trajectory and the dynamic characteristics of the robot.After that,an optimized backtracking algorithm is set out to make S-curve acceleration and deceleration planning available for each sub curve segment.In addition,in order to ensure the robot does not overspeed at the minimum feedrate,the running time of each acceleration and deceleration stage is adjusted to an integral multiple of the interpolation cycle,and the feedrate at the junction of sub curve segments is smoothened.In the end,the model iterative optimization curve interpolation is put forward,which considerably decreases the feedrate fluctuation.The simulation results show that all the parameters of the interpolation trajectory meet the requirements,and the maximum feedrate fluctuation is only 0.000099%.The real robot test also verifies that this method can effectively reduce the trajectory error.

关 键 词:工业机器人 NURBS曲线 运行时间周期化 优化回溯算法 模型迭代寻优 

分 类 号:TP242.2[自动化与计算机技术—检测技术与自动化装置]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象