Novel multi‐domain attention for abstractive summarisation  

在线阅读下载全文

作  者:Chunxia Qu Ling Lu Aijuan Wang Wu Yang Yinong Chen 

机构地区:[1]College of Computer Science and Engineering,Chongqing University of Technology,Chongqing,China [2]School of Computing and Augmented Intelligence,Arizona State University,Tempe,Arizona,USA

出  处:《CAAI Transactions on Intelligence Technology》2023年第3期796-806,共11页智能技术学报(英文)

基  金:supported by the National Social Science Foundation of China(2017CG29);the Science and Technology Research Project of Chongqing Municipal Education Commission(2019CJ50);the Natural Science Foundation of Chongqing(2017CC29).

摘  要:The existing abstractive text summarisation models only consider the word sequence correlations between the source document and the reference summary,and the summary generated by models lacks the cover of the subject of source document due to models'small perspective.In order to make up these disadvantages,a multi‐domain attention pointer(MDA‐Pointer)abstractive summarisation model is proposed in this work.First,the model uses bidirectional long short‐term memory to encode,respectively,the word and sentence sequence of source document for obtaining the semantic representations at word and sentence level.Furthermore,the multi‐domain attention mechanism between the semantic representations and the summary word is established,and the proposed model can generate summary words under the proposed attention mechanism based on the words and sen-tences.Then,the words are extracted from the vocabulary or the original word sequences through the pointer network to form the summary,and the coverage mechanism is introduced,respectively,into word and sentence level to reduce the redundancy of sum-mary content.Finally,experiment validation is conducted on CNN/Daily Mail dataset.ROUGE evaluation indexes of the model without and with the coverage mechanism are improved respectively,and the results verify the validation of model proposed by this paper.

关 键 词:abstractive summarisation attention mechanism Bi‐LSTM coverage mechanism pointer network 

分 类 号:TP39[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象