检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:张宝玉[1] ZHANG Baoyu(School of Intelligent Manufacturing,Jiangsu Food&Pharmaceutical Science College,Huaian 223003,China)
机构地区:[1]江苏食品药品职业技术学院智能制造学院,江苏淮安223003
出 处:《汽车实用技术》2024年第6期78-83,共6页Automobile Applied Technology
基 金:江苏省高等学校自然科学研究面上项目(20KJD510007)。
摘 要:轮胎拆装是汽修行业修补轮胎必要步骤之一,由于重型货车轮胎过重导致工人腰椎受到严重损伤。现将EfficientNet-B4轻量型网络结构算法替换YOLO_v3算法的主干部分(DarkNet-53),从而实现各类车型轮胎紧固件的识别。替换后的网络参数大量减少,紧固件样本训练速度加快。YOLO_v3使用二分类交叉熵损失函数对正负样本分类并计算损失,现使用Focal loss分类损失函数替换二分类交叉熵损失函数,从而提出一种新的神经网络模型(YOLO_v3-Nut)。实验结果表明,YOLO_v3-Nut模型在训练与识别速度特性上都更优于YOLO_v3模型,且文中的模型结构比YOLO_v3模型储存空间减少了43.01%,算法平均准确率(MAP)为93.2%,同时检测速度为36 fps,足够完成各类车型轮胎紧固件的识别。Tire disassembly is one of the necessary steps for repairing tires in the auto repair industry.Due to the excessive heavy truck tires,the lumbar spine is damaged by the lumbar spine.The EfficientNet-B4 lightweight network structure algorithm is now replaced with the main part of the YOLO_v3 algorithm(DarkNet-53)to realize the identification of tire fasteners in various models.The replaced network parameters are largely reduced,and the fastener sample training speed is accelerated.YOLO_v3 uses a duplex cross-entropy loss function to classify and calculate the loss of positive and negative samples.The Focal loss classification loss function is now replaced by the binary cross-entropy loss function,so as to propose a new neural network model(YOLO_v3-Nut).The experimental results show that the YOLO_v3-Nut model is better than the YOLO_v3 model in terms of training and recognition speed characteristics,and the model structure of this article is reduced by 43.01%compared with the YOLO_v3 model storage space.The speed is 36 fps,which is enough to complete the identification of tire fasteners in various models.
关 键 词:轮胎紧固件 YOLO_v3 EfficientNet 自动拆卸 分类损失函数
分 类 号:TP312[自动化与计算机技术—计算机软件与理论]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.38