检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:李东 许霄 吴琳[1] LI Dong;XU Xiao;WU Lin(College of Joint Operation,National Defense University,Beijing 100091,China)
出 处:《指挥控制与仿真》2024年第2期18-23,共6页Command Control & Simulation
基 金:国家自然科学基金(62006235)。
摘 要:为研究有限作战指挥样本下的智能决策方法,针对作战决策经验难以表达和智能决策学习训练样本稀缺等问题,基于联合战役仿真推演环境,提出了一种基于生成对抗模仿学习的作战决策方法。该方法整合了作战决策经验表示与学习过程,在上层决策和底层动作分层的基础上,采用规则定义特定任务执行逻辑,并利用生成对抗模仿学习算法提升智能体场景泛化能力。在构设的典型对抗场景中,该方法达到了预期效果,算法训练收敛,智能体输出决策合理。实验结果初步表明,生成对抗模仿学习作为一种智能作战决策方法,具有进一步研究价值。To study the intelligent decision making methods under limited decision samples,aiming at the problems that operational decisionmaking experience is difficult to express and the training samples for intelligent decision learning are limited,based on the joint operational simulation and drill environment,a decisionmaking method based on generative adversarial imitation learning is proposed.This method integrates the operational decisionmaking experience representation and learning process.On the basis of highlevel decisionmaking and lowlevel action,rule definitions are used to specify the logic of task execution,and generative adversarial imitation learning algorithms are utilized to improve the generalization ability of intelligent agents in scenarios.This method achieved expected results in the constructed typical adversarial scenarios.The algorithm training converged and the decisions output by the intelligent agent are reasonable.Preliminary experimental results indicate that generative adversarial imitation learning,as an intelligent operational decisionmaking method,has value for further research.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.119.110.206