基于改进U-net的沥青路面图像裂缝分割方法  被引量:1

Crack Segmentation of Asphalt Pavement Images Based on Improved U-net

在线阅读下载全文

作  者:张涛 王金 刘斌[2] 许牛琦[2] ZHANG Tao;WANG Jin;LIU Bin;XU Niuqi(Beijing Key Laboratory of Traffic Engineering,Beijing University of Technology,Beijing 100124,China;Beijing Engineering Research Center of Urban Transport Operation Guarantee,Beijing University of Technology,Beijing 100124,China)

机构地区:[1]北京工业大学交通工程北京市重点实验室,北京100124 [2]北京工业大学北京市城市交通运行保障工程技术研究中心,北京100124

出  处:《交通信息与安全》2023年第6期90-99,共10页Journal of Transport Information and Safety

基  金:北京市自然科学基金项目(8232005);北京市自然科学基金-丰台轨道交通前沿研究联合基金项目(L221026)资助。

摘  要:为提高基于图像的沥青路面裂缝分割精度,基于U-net架构提出了strip-attention-u-net(SAU)网络。该网络采用ResNeSt50作为特征提取网络,能有效地捕捉图像中的语义信息和局部细节;在编解码跳跃连接阶段、解码器上采样阶段分别引入通道增强条形池化(channel enhanced strip pooling,CESP)模块、卷积块注意力(convolutional block attention,CBA)模块,该模块能有效减少通道压缩导致的特征丢失情况,更好地保留裂缝特征;结合Dice Loss和Focal Loss的损失函数可以使模型关注像素占比小、难以分割的细长裂缝。为测试SAU网络的性能,使用EdmCrack600公共数据集和BJCrack600实验数据集开展了模块消融实验,并与典型图像分割模型(FCN、PSPNet、DeepLabv3、U-net、Attention U-net和U-net++)进行了对比。结果表明:在EdmCrack600公共数据集上的对比实验中,SAU网络的裂缝分割效果更佳,裂缝交并比(intersection over union,IoU)和F1分数分别为50.89%和83.59%;在BJCrack600实验数据集上进行网络训练和对比实验中,表明SAU网络在沥青路面裂缝分割上的性能更优,裂缝IoU和F1分数分别为69.69%和90.90%,可为道路养护提供更为智能化、高效的决策支持。To improve the segmentation accuracy of image-based asphalt pavement cracks,this paper proposes a strip-attention-u-net(SAU)network based on U-net.The network uses ResNeSt50 as a core feature learning struc-ture to effectively capture semantic information and local details.A channel enhanced strip pooling(CESP)module in the encode-decode skip connection is investigated to enhance the ability of learning crack features and better uti-lize residual connections.A convolutional block attention(CBA)module in the up sampling stage of the decoder is developed to mitigate feature losses caused by channel compression and preserve crack features.A loss function comprised by a Dice Loss and a Focal Loss function is performed to attract thin and small crack features.A publicly available EdmCrack600 dataset and an experimental BJCrack600 dataset(600 asphalt pavement images collected in an experiment)are used to evaluate the performance of the SAU network.Ablation experiments are conducted and the SAU network is compared with state-of-the-art networks(FCN,PSPNet,DeepLabv3,U-net,Attention U-net,and U-net++).For EdmCrack600 dataset,the proposed SAU network outperforms the state-of-the-art networks,with intersection over union(IoU)and F1 score of 50.89%and 83.59%,respectively.Regarding the BJCrack600 dataset,the SAU network demonstrates the best performance among the state-of-the-art networks,achieving IoU and F1 score of 69.69%and 90.90%,respectively.The study findings could provide more intelligent and efficient supports in making advanced decisions of road maintenance.

关 键 词:道路工程 裂缝分割 编解码网络 深度学习 语义分割 

分 类 号:U416.2[交通运输工程—道路与铁道工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象