Specht Triangle Approximation of Large Bending Isometries  

在线阅读下载全文

作  者:Xiang Li Pingbing Ming 

机构地区:[1]LSEC,Institute of Computational Mathematics and Scientific/Engineering Computing,AMSS,Chinese Academy of Sciences,No.55,East Road Zhong-Guan-Cun,Beijing 100190,China [2]School of Mathematical Sciences,University of Chinese Academy of Sciences,Beijing 100049,China

出  处:《Annals of Applied Mathematics》2023年第4期544-569,共26页应用数学年刊(英文版)

基  金:supported by National Natural Science Foundation of China through Grants No.11971467 and No.12371438.

摘  要:We propose a Specht triangle discretization for a geometrically nonlinear Kirchhoff plate model with large bending isometry.A combination of an adaptive time-stepping gradient flow and a Newton’s method is employed to solve the ensuing nonlinear minimization problem.Γ−convergence of the Specht triangle discretization and the unconditional stability of the gradient flow algorithm are proved.We present several numerical examples to demonstrate that our approach significantly enhances both the computational efficiency and accuracy.

关 键 词:Specht triangle plate bending isometry constraint adaptive time-stepping gradient flow 

分 类 号:O224[理学—运筹学与控制论]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象