CLASSIFICATIONS OF DUPIN HYPERSURFACES IN LIE SPHERE GEOMETRY  

在线阅读下载全文

作  者:Thomas E.CECIL 

机构地区:[1]Department of Mathematics and Computer Science,College of the Holy Cross,Worcester,MA,01610,USA

出  处:《Acta Mathematica Scientia》2024年第1期1-36,共36页数学物理学报(B辑英文版)

摘  要:This is a survey of local and global classification results concerning Dupin hypersurfaces in S^(n)(or R^(n))that have been obtained in the context of Lie sphere geometry.The emphasis is on results that relate Dupin hypersurfaces to isoparametric hypersurfaces in spheres.Along with these classification results,many important concepts from Lie sphere geometry,such as curvature spheres,Lie curvatures,and Legendre lifts of submanifolds of S^(n)(or R^(n)),are described in detail.The paper also contains several important constructions of Dupin hypersurfaces with certain special properties.

关 键 词:Dupin hypersurfaces isoparametric hypersurfaces Lie sphere geometry Lie sphere transformations Lie curvatures 

分 类 号:O186.11[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象