Determining Sets and Determining Numbers of Finite Groups  

在线阅读下载全文

作  者:Dengyin Wang Chi Zhang Haipeng Qu 

机构地区:[1]School of Mathematics,China University of Mining and Technology Xuzhou,Jiangsu 221116,China [2]School of Mathematics and Computer Science,Shanxi Normal University Linfen,Shanxi 041000,China

出  处:《Algebra Colloquium》2024年第1期111-128,共18页代数集刊(英文版)

基  金:supported by the National Natural Science Foundation of China(11971474,12371025);supported by the National Natural Science Foundation of China(12271318).

摘  要:A subset D of a group G is a determining set of G if every automorphism of G is uniquely determined by its action on D,and the determining number of G,a(G),is the cardinality of a smallest determining set.A group G is called a DEG-group if α(G)equals(G),the generating number of G.Our main results are as follows.Finite groups with determining number 0 or 1 are classified;finite simple groups and finite nilpotent groups are proved to be DEG-groups;for a given finite group H,there is a DEG-group G such that H is isomorphic to a normal subgroup of G and there is an injective mapping from the set of all finite groups to the set of finite DEG-groups;for any integer k≥2,there exists a group G such that α(G)=2 and(G)≥k.

关 键 词:determining number AUTOMORPHISMS nilpotent groups 

分 类 号:O15[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象