检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:王茂森 鲍久圣[1] 谢厚抗 刘同冈[1] 阴妍[1] 章全利 WANG Maosen;BAO Jiusheng;XIE Houkang;LIU Tonggang;YIN Yan;ZHANG Quanli(School of Mechanical and Electrical Engineering,China University of Mining and Technology,Xuzhou,Jiangsu,221116)
出 处:《中国机械工程》2024年第3期427-437,共11页China Mechanical Engineering
基 金:江苏省科技成果转化专项资金(BA2023035);中央高校基本科研业务费专项资金(2022XSCX27);江苏高校优势学科建设工程项目(PAPD)。
摘 要:基于隧道内的特殊行驶环境和无人驾驶感知需求,选择合适的传感器及硬件搭建试验车辆,构建了毫米波雷达与摄像头多传感器融合的感知系统;基于YOLOv4目标级信息融合算法和改进D-S证据理论决策级信息融合算法,提出了一种“目标决策”两级信息融合策略;最后,在城市道路隧道环境内开展了感知信息两级融合验证试验,试验结果表明:相比单一的摄像头或毫米波雷达感知效果,基于摄像头与毫米波雷达传感器感知ROI区域关联实现的目标级融合结果可以提高9.51%的识别准确率,弥补了单一传感器在隧道环境内感知技术的不足;基于目标级融合感知结果,利用改进后的D-S证据理论算法再进行决策级融合,相比于单一的目标级融合结果,误检率降低了3.61%,显著提高了检测精度。采取多传感器感知信息目标决策两级融合策略能够满足隧道特殊环境内无人驾驶车辆可靠感知需求,为推动无人驾驶技术落地应用提供了理论与技术支撑。Based on the special driving environment in the tunnel and the perception requirements of unmanned driving,appropriate sensors and hardware were chosen to build a test vehicle and a perception system of multi-sensor fusion of millimeter-wave radar and camera.A two-level information fusion algorithm of“target-decision”was proposed based on YOLOv4 target-level information fusion algorithm and improved D-S evidence theory.Finally,a verification test of perception information two-level fusion was carried out in the urban road tunnel environments.The results show that in the tunnel environments,compared with the single camera or the millimeter-wave radar sensing results,the target-level fusion result based on the association of the camera and the millimeter-wave radar sensor to perceive the ROI area may improve the recognition accuracy by 9.51%,making up for the shortcomings of a single sensor in the tunnel environment perception technology.Based on the target-level fusion perception results,using the improved D-S evidence theory algorithm to perform decision-level fusion,compared with the single target-level fusion results,the false detection rate is reduced by 3.61%,which significantly improves detection accuracy.By adopting the multi-sensor sensing information target-decision-making two-level fusion strategy,it may meet the reliable sensing requirements of unmanned vehicles in the special tunnel environments,and provide theoretical and technical support for promoting the applications of unmanned controlled technology.
关 键 词:隧道环境 无人驾驶 多传感器融合 D-S证据理论 “目标决策”两级融合策略
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.217.140.32