Data-Driven Ai-and Bi-Soliton of the Cylindrical Korteweg-de Vries Equation via Prior-Information Physics-Informed Neural Networks  

在线阅读下载全文

作  者:田十方 李彪 张钊 Shifang Tian;Biao Li;Zhao Zhang(School of Mathematics and Statistics,Ningbo University,Ningbo 315211,China;Guangdong Provincial Key Laboratory of Nanophotonic Functional Materials and Devices,South China Normal University,Guangzhou 510631,China)

机构地区:[1]School of Mathematics and Statistics,Ningbo University,Ningbo 315211,China [2]Guangdong Provincial Key Laboratory of Nanophotonic Functional Materials and Devices,South China Normal University,Guangzhou 510631,China

出  处:《Chinese Physics Letters》2024年第3期1-6,共6页中国物理快报(英文版)

基  金:supported by the National Natural Science Foundation of China(Grant Nos.12175111 and 12235007);the K.C.Wong Magna Fund in Ningbo University。

摘  要:By the modifying loss function MSE and training area of physics-informed neural networks(PINNs),we propose a neural networks model,namely prior-information PINNs(PIPINNs).We demonstrate the advantages of PIPINNs by simulating Ai-and Bi-soliton solutions of the cylindrical Korteweg-de Vries(cKdV)equation.

关 键 词:equation SOLITON CYLINDRICAL 

分 类 号:O175[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象