基于深度学习的智能表面毫米波MIMO信道估计  被引量:3

Deep Learning-based Intelligent Surface Millimeter-wave MIMO Channel Estimation

在线阅读下载全文

作  者:张思伟 袁德成 王国刚 ZHANG Siwei;YUAN Decheng;WANG Guogang(Key Laboratory of Chemical Control Technology of Liaoning Province,Shenyang 110142,China;College of Information Engineering,Shenyang University of Chemical Technology,Shenyang 110142,China)

机构地区:[1]辽宁省化工控制技术重点实验室,辽宁沈阳110142 [2]沈阳化工大学信息工程学院,辽宁沈阳110142

出  处:《无线电工程》2024年第4期892-899,共8页Radio Engineering

基  金:国家重点研发计划资助(2018YFB1700200)。

摘  要:研究了一个基于深度学习的大型智能表面(Large Intelligent Surface, LIS)毫米波多输入多输出(Multiple-Input Multiple-Output, MIMO)系统。为了克服波长和阵列间距相差较大的信号传输问题,传统的均匀线性阵列(Uniform Linear Array, ULA)被替代为均匀平面阵列(Uniform Planar Array, UPA)。提出了一种基于改进的双卷积神经网络——ChannelNet的信道估计方法。采用最小二乘(Least Squares, LS)算法获取初始化的信道信息,使用ChannelNet获得更高精度的信道信息,并重点探究了在UPA结构下的表现。通过与LS算法和多层感知器算法进行比较。结果表明,该算法在信道估计精度和效率方面均优于以上2种算法,且使用UPA结构的ChannelNet算法相对于使用ULA结构的表现更好。该方法在毫米波MIMO信道估计方面具有更好的性能。A deep learning-based Large Intelligent Surface(LIS)millimeter-wave Multiple-Input Multiple-Output(MIMO)system is investigated.In order to overcome the challenge of signal transmission with significant differences in wavelength and array spacing,the conventional Uniform Linear Array(ULA)has been replaced by a Uniform Planar Array(UPA).An improved dual-convolutional neural network-ChannelNet algorithm based method for channel estimation is proposed.Initially,the least squares algorithm is employed to obtain the initial channel information.Subsequently,ChannelNet is utilized to achieve higher precision in channel estimation,with a particular focus on its performance within the context of the UPA structure.By comparing ChannelNet algorithm with the least squares algorithm and the multilayer perceptron algorithm,the results indicate that ChannelNet algorithm outperforms both the least squares algorithm and the multilayer perceptron algorithm in terms of channel estimation accuracy and efficiency.Furthermore,the performance of the ChannelNet algorithm utilizing the UPA structure is superior to that of using the ULA structure.This indicates that the proposed method exhibits superior performance in millimeter-wave MIMO channel estimation.

关 键 词:大型智能表面 信道估计 ChannelNet 均匀线性阵列 均匀平面阵列 

分 类 号:TN928[电子电信—通信与信息系统]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象