检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:张元鸣[1] 肖士易 徐雪松 程振波[1] 肖刚[1] ZHANG Yuanming;XIAO Shiyi;XU Xuesong;CHENG Zhenbo;XIAO Gang(College of Computer Science and Technology,Zhejiang University of Technology,Hangzhou 310023,China)
机构地区:[1]浙江工业大学计算机科学与技术学院,浙江杭州310023
出 处:《计算机集成制造系统》2024年第3期893-905,共13页Computer Integrated Manufacturing Systems
基 金:浙江省“尖兵”“领雁”研发攻关计划资助项目(2023C01022);国家自然科学基金资助项目(61976193)。
摘 要:为了从装备传感器监测数据和其他关联数据中提取更全面的时间域和空间域特征信息,提出一种基于知识图谱多集池化的健康状态评估方法。构建了带时间标签的健康知识图谱,以建模装备一段时间内监测数据、部件组成数据和先验知识间的时空依赖关系。在此基础上,设计了图多集池化网络模型,该模型通过节点特征学习、第一级图池化、自注意力特征学习和第二级图池化能够生成图谱的整体向量表示,将健康状态评估转换为基于表示学习的图谱分类任务。在公开的发动机数据集上对所提方法进行了实验评价,结果表明,该方法能够获得较高的评估准确度,在小样本情况下也表现出良好的优势。To extract more comprehensive features in time domain and space domain from equipment sensor monitoring data and other related heterogeneous data,a health intelligent evaluation method based on knowledge graph multi-set pooling was proposed.A Health Temporal Knowledge Graph(HTKG)was constructed to fuse spatiotemporal features of monitoring data,component data and priori knowledge.The overall spatiotemporal features of HTKG were embedded into graph-level representation vectors with a graph pooling network,which included node feature learning,first level graph pooling,self-attention feature learning and second level graph pooling.The health evaluation was transformed into a graph classification problem based on representation learning.The proposed method had been evaluated on public engine datasets.Experiments results showed that the method could achieve high evaluation accuracy and also shows good stability in few-shot situations.
关 键 词:健康状态评估 图神经网络 知识图谱 时空特征 图池化
分 类 号:TH17[机械工程—机械制造及自动化]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.15