检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:闵令通 范子满 窦飞阳 吕勤毅 李鑫[1] MIN Lingtong;FAN Ziman;DOU Feiyang;LYU Qinyi;LI Xin(School of Electronic Information,Northwestern Polytechnical University,Xi'an 710072,China)
出 处:《遥测遥控》2024年第2期1-9,共9页Journal of Telemetry,Tracking and Command
基 金:国家自然科学基金项目(62206221);陕西省自然科学基础研究计划资助项目(2021JM-074)。
摘 要:近海船舶目标检测是一项非常具有挑战性的任务,受到学者专家广泛关注。基于卷积神经网络(CNN)和注意力机制的检测器在近海船舶目标检测方面的应用取得了显著成就。然而,船舶目标检测存在着表观相似和背景干扰导致检测过程中出现误检的问题。为此,本文提出了一种用于Faster RCNN (更快的基于区域的卷积神经网络)的表观细粒度辨别的检测头模块。该模块包括类别细粒度分支和高效全维动态卷积定位分支。其中类别细粒度分支通过全局特征建模和灵活的感知范围来挖掘和利用类别细粒度辨别特征,高效全维动态卷积定位分支通过高效灵活的感知船舶边界信息来区分目标与背景,从而减少误检漏检问题。通过在近海船舶公开数据集Seaships7000上进行实验验证,本文算法减少了误检漏检,提升了检测器性能。Offshore ship object detection is a very challenging task and has received widespread attention from scholars and experts.Detectors based on Convolutional Neural Networks(CNN)and attention mechanisms have made significant progress in offshore ship object detection.However,the problem of false detection in the detection process is caused by the apparent similarity and background interference of ship targets.In order to solve this problem,this paper proposes a detection head module for fine-grained appearance discrimination implemented with Faster RCNN.This module includes a category fine-grained branch and an efficient full-dimensional dynamic convolution localization branch.The category fine-grained branch mines and utilizes category finegrained identification features through global feature modeling and flexible perception range.The efficient omni-dimensional dynamic convolution positioning branch distinguishes objects and backgrounds through the efficient and flexible perception of ship boundary information,thereby reducing false and missed detections.Through experimental verification on the offshore ship public dataset Seaships7000,the proposed algorithm reduces false detections and missed detections and improves detector performance.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.249