Nodule Detection Using Local Binary Pattern Features to Enhance Diagnostic Decisions  

在线阅读下载全文

作  者:Umar Rashid Arfan Jaffar Muhammad Rashid Mohammed S.Alshuhri Sheeraz Akram 

机构地区:[1]Faculty of Computer Science and Information Technology,The Superior University,Lahore,54600,Pakistan [2]Intelligent Data Visual Computing Research(IDVCR),Lahore,54600,Pakistan [3]Department of Computer Science,National University of Technology,Islamabad,45000,Pakistan [4]Department of Radiological Sciences and Medical Imaging,College of Applied,Medical Sciences,Prince Sattam Bin Abdulaziz University,Al-Kharj,16278,Saudi Arabia [5]Information Systems Department,College of Computer and Information Sciences,Imam Mohammad Ibn Saud Islamic University(IMSIU),Riyadh,12571,Saudi Arabia

出  处:《Computers, Materials & Continua》2024年第3期3377-3390,共14页计算机、材料和连续体(英文)

摘  要:Pulmonary nodules are small, round, or oval-shaped growths on the lungs. They can be benign (noncancerous) or malignant (cancerous). The size of a nodule can range from a few millimeters to a few centimeters in diameter. Nodules may be found during a chest X-ray or other imaging test for an unrelated health problem. In the proposed methodology pulmonary nodules can be classified into three stages. Firstly, a 2D histogram thresholding technique is used to identify volume segmentation. An ant colony optimization algorithm is used to determine the optimal threshold value. Secondly, geometrical features such as lines, arcs, extended arcs, and ellipses are used to detect oval shapes. Thirdly, Histogram Oriented Surface Normal Vector (HOSNV) feature descriptors can be used to identify nodules of different sizes and shapes by using a scaled and rotation-invariant texture description. Smart nodule classification was performed with the XGBoost classifier. The results are tested and validated using the Lung Image Consortium Database (LICD). The proposed method has a sensitivity of 98.49% for nodules sized 3–30 mm.

关 键 词:Pulmonary nodules SEGMENTATION HISTOGRAM THRESHOLDING 

分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象