稀疏L型阵中基于压缩感知的角度估计方法  

Angle estimation method based on compressed sensing insparse L-shaped array

在线阅读下载全文

作  者:苏龙 谷绍湖 邓桂萍 SU Long;GU Shaohu;DENG Guiping(Hunan Aircraft Maintenance Engineering Technology Research Center,Changsha Hunan 410124,China)

机构地区:[1]湖南省飞机维修工程技术研究中心,湖南长沙410124

出  处:《太赫兹科学与电子信息学报》2024年第3期345-352,共8页Journal of Terahertz Science and Electronic Information Technology

基  金:湖南省自然科学基金资助项目(2020JJ7083)。

摘  要:利用二级Nested阵来构建稀疏L型阵列,针对此阵列,提出了基于压缩感知的角度估计方法。该方法通过计算接收数据的自相关协方差矩阵并向量化,然后进行重排序和去冗余,得到虚拟阵列的入射角信息。该虚拟阵列的长度远远大于实际物理阵列的长度,因而相比同物理阵元的均匀L型阵,阵列孔径和自由度明显增大。最后利用正交匹配追踪技术对虚拟阵列的l1范数约束问题进行求解,并完成二维角度的配对。计算机仿真表明,所提算法具有更高的信源分辨力,并且在高信噪比、高快拍数、大角度间隔条件下,具有更好的估计性能。A two-level Nested array is employed to construct a sparse L-shaped array.For this array,an angle estimation method based on compressed sensing is proposed.This method calculates the autocorrelation covariance matrix of the received data and quantizes it,and then reorders and removes the redundancy to obtain the incidence angle information of the virtual array.The length of the virtual array is much larger than that of the actual physical array,so compared with the uniform L-shaped array with the same physical array element,the array aperture and degree of freedom have been greatly improved.Finally,the orthogonal matching pursuit technique is adopted to solve the l 1 norm constraint problem of the virtual array.Computer simulation shows that the proposed algorithm has higher source resolution and better estimation performance under the conditions of high signal-to-noise ratio,high snapshot number and large angle interval.

关 键 词:稀疏L型阵 虚拟阵列 压缩感知 正交匹配追踪算法 

分 类 号:TN911.7[电子电信—通信与信息系统]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象