Wave nature of Rosensweig instability  

在线阅读下载全文

作  者:李柳 李德才 戚志强 王璐 张志力 Liu Li;Decai Li;Zhiqiang Qi;Lu Wang;Zhili Zhang(School of Mechanical,Electronic,and Control Engineering,Beijing Jiaotong University,Beijing 100044,China;Beijing Key Laboratory of Flow and Heat Transfer of Phase Changing in Micro and Small Scale,Beijing 100044,China;State Key Laboratory of Tribology,Tsinghua University,Beijing 100084,China)

机构地区:[1]School of Mechanical,Electronic,and Control Engineering,Beijing Jiaotong University,Beijing 100044,China [2]Beijing Key Laboratory of Flow and Heat Transfer of Phase Changing in Micro and Small Scale,Beijing 100044,China [3]State Key Laboratory of Tribology,Tsinghua University,Beijing 100084,China

出  处:《Chinese Physics B》2024年第3期471-479,共9页中国物理B(英文版)

基  金:Project supported by the National Natural Science Foundation of China(Grant Nos.51735006,51927810,and U1837206);Beijing Municipal Natural Science Foundation(Grant No.3182013).

摘  要:The explicit analytical solution of Rosensweig instability spikes'shapes obtained by Navier-Stokes(NS)equation in diverse magnetic field H vertical to the flat free surface of ferrofluids are systematically studied experimentally and theoretically.After carefully analyzing and solving the NS equation in elliptic form,the force balanced surface equations of spikes in Rosensweig instability are expressed as cosine wave in perturbated magnetic field and hyperbolic tangent in large magnetic field,whose results both reveal the wave-like nature of Rosensweig instability.The results of hyperbolic tangent form are perfectly fitted to the experimental results in this paper,which indicates that the analytical solution is basically correct.Using the forementioned theoretical results,the total energy of the spike distribution pattern is calculated.By analyzing the energy components under different magnetic field intensities H,the hexagon-square transition of Rosensweig instability is systematically discussed and explained in an explicit way.

关 键 词:FERROFLUIDS Rosensweig instability hexagon-square transition 

分 类 号:O361.3[理学—流体力学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象