检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:张劭斌 张志华 ZHANG Shaobin;ZHANG Zhihua(Mapping and geographic information School,Lanzhou Jiaotong University,Lanzhou 730000,China)
机构地区:[1]兰州交通大学测绘与地理信息学院,甘肃兰州730000
出 处:《测绘通报》2024年第3期19-24,共6页Bulletin of Surveying and Mapping
基 金:中央政府指导地方科技发展计划项目(22ZY1QA005);国家自然科学基金(42161069);兰州交通大学项目(201806);甘肃省重点科技项目(21YF11GA08);甘肃省科技计划项目(23JRRA870)。
摘 要:车速检测是城市交通体系中车辆运行安全的重要环节,对维持城市交通安全至关重要。针对现有的多种交通车辆测速方法存在高成本、易受外界条件影响、安装区域限制等问题,本文提出一种成本较低、灵活性高的基于视频图像的车辆识别与测速方法。采用深度学习的方法搭建YOLOv4框架并训练COCO数据集识别车辆,改进识别方法提取识别车辆外接最大矩形框下边界中点的像平面坐标,引入近景摄影测量的方法并对共线方程进行改进,在单摄像机情况下完成对车辆的识别,计算车辆瞬时速度,绘制检测区域内车辆速度曲线,最后采取试验验证方法可行性并进行精度评定。Speed detection plays a crucial role in ensuring the safe operation of vehicles in urban transportation systems,making it essential for maintaining traffic safety.However,existing methods for measuring vehicle speed suffer from high costs,susceptibility to external conditions,and limitations in installation areas.To address these issues,this paper proposes a low-cost and flexible vehicle recognition and speed measurement method based on video imagery.The approach utilizes deep learning techniques to construct the YOLOv4 framework and train it on the COCO dataset for vehicle identification.The recognition method is improved by extracting the pixel coordinates of the midpoint of the lower boundary of the maximum bounding rectangle encompassing the recognized vehicles.Additionally,a close-range photogrammetry method is introduced,and improvements are made to the collinearity equations to enable vehicle recognition in a single-camera setup.The displacement of vehicles is computed within a fixed time interval,and a velocity curve of vehicles within the monitoring area is plotted.Experimental validation is conducted to assess the feasibility and accuracy of the proposed method.
分 类 号:P23[天文地球—摄影测量与遥感]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.15