检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:曾梦岳 肖燕珊[1] 刘波[2] Zeng Mengyue;Xiao Yanshan;Liu Bo(School of Computer Science&Technology,Guangdong University of Technology,Guangzhou 510006,China;School of Automation,Guangdong University of Technology,Guangzhou 510006,China)
机构地区:[1]广东工业大学计算机学院,广州510006 [2]广东工业大学自动化学院,广州510006
出 处:《计算机应用研究》2024年第4期1052-1057,共6页Application Research of Computers
基 金:国家自然科学基金资助项目(62076074)。
摘 要:目前,只有少量面向多任务学习的序数回归方法。这些方法假设不同的任务具有相同的权重,对整体模型具有相同的贡献。然而,在真实应用中,不同任务对于整体模型的贡献往往是不同的。为此,提出了一种基于任务权重自动优化的多任务序数回归算法。首先,提出了基于支持向量机的多任务序数回归模型,通过分类器参数共享,实现不同任务之间的信息迁移;其次,考虑到不同任务对整体模型可能具有不同贡献,赋予每个任务一个权重,这些权重将在学习过程中自动优化求解;最后,采用了启发式框架,交替地建立多任务序数回归模型和优化任务权重。实验结果表明,提出方法相比于其他多任务序数回归方法,平均0-1误差降低了3.8%~12.3%,平均绝对误差降低了4.1%~11%。考虑了每个任务的不同权重,通过自动优化这些权重,降低了多任务序数回归模型的分类误差。At present,there are only a very few works done on multi-task ordinal regression(OR).These works assume that different tasks contribute equally to the overall model.However,in practice,different tasks may have distinct contributions to the overall model.This paper proposed a novel multi-task ordinal regression method with task weight discovery method.Firstly,it presented a support-vector-machine-based multi-task OR model.By sharing the classifier parameters,the classification information could be transferred among different tasks.Secondly,considering that different tasks had different contributions to the overall model,it assigned each task a weight,which would be automatically optimized during the learning process.Finally,it adopted a heuristic framework to construct the multi-task OR model and optimized the task weights alternately.The experimental results show that the proposed method achieves 3.8%to 12.3%improvements in terms of MZE and 4.1%to 11%improvements in terms of MAE,compared to the existing multi-task OR methods.Considering the different weights of each task,and by automatically optimizing these weights,the proposed method reduces the classification error of the multi-task ordinal regression model.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.145